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RESUMO

Elementos estruturais de chapas sdo comuns em aplicacdes de engenharia, desde
aplicacBes simples até a utilizacdo na fuselagem de aeronaves. A integridade
estrutural é um fator de seguranca e de confiabilidade da pe¢a e/ou do conjunto
mecanico. Uma das principais causas de falhas em estruturas é o aparecimento de
trincas, frequentemente originadas em regifes onde ocorrem concentracdes de
tensdo. A presenca de furos em chapas € um exemplo tipico de agente concentrador
de tensGes e, desta maneira, a determinacdo dos fatores de concentracdo de tensdo e
as caracteristicas da distribuicdo de tensdes sdo fatores importantes para garantir a

seguranca da estrutura.

Neste trabalho, serdo analisadas as componentes de tensdo em chapas planas
contendo orificios circulares em condicdes de estado plano de tensdo. Os
carregamentos poderao ser aplicados tanto no contorno da chapa quanto no contorno
dos orificios. O método de solucdo abrangera tanto o uso de métodos analitico-
numéricos (uso da funcdo de tensdo de Airy e coordenadas bipolares) quanto
métodos numéricos como o método dos elementos finitos. As anlises
computacionais serdo feitas com o auxilio dos programas Maple para a abordagem
analitico-numeérica, e dos softwares Patran e Nastran para as analises por elementos
finitos, sendo comparadas, sobretudo, as tensdes circunferenciais nos bordos dos

orificios utilizando as duas metodologias propostas.



ABSTRACT

Plate elements are usually applied in engineering structures, from simple applications
to aircraft fuselage. The structural integrity is a fundamental aspect related to the
safety and reliability of mechanical equipment or devices. One of the main failure
causes in structures is the occurrence of cracks, which are often observed in regions
where stress concentration exists. Holes in plates are a typical example of stress
concentrator and, so, the correct determination of stress concentration factors and the
stress distribution characteristics are important factors to guarantee the structural

safety.

In this work, stress components in plates with two circular holes under plane stress
state will be analyzed. The loads may be applied not only in the borders of the plate,
but also in the holes’ borders. The solution method will include analytical-numerical
methods (using the Airy stress function and bipolar co-ordinates) and numerical
methods, such as the Finite Element Method. The computational analysis shall be
done with Maple for the analytical-numerical part, and with Patran and Nastran for
the Finite Element Method part. Finally the hoop stress along the holes’ borders will

be compared within both proposed methodologies.
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1 INTRODUCAO

Muitos problemas na area da engenharia envolvem os elementos estruturais de
chapas. Furos nestes componentes geram concentragcdes indesejadas de tensdo, que
podem levar a trincas e a propagacao destas, comprometendo a integridade estrutural
da peca. A determinacdo dos fatores de concentracdo de tensédo €, portanto, um fator

decisivo na seguranca da estrutura.

Para a obtencdo de um projeto eficiente, econdmico e confiavel, além de haver
técnicas capazes de reduzir concentragdes de tensdo em — ou proximo de —
descontinuidades geométricas em estruturas de engenharia, € de extrema importancia
ter as ferramentas e modelos (analiticos e/ou numéricos) para calcular e prever o

nivel de tensdes, deformacdes e 0s riscos envolvidos.

A maioria das solucBes exatas existentes aplica-se apenas em condicdes livres de
tensdo nos bordos dos furos, apesar de em aplicacGes de engenharia, serem bem
frequentes situacdes de furos pressurizados (Radi E. , 2011). Deste modo, este
trabalho visa analisar as componentes de tensdo e deformagdo em chapas planas
contendo orificios circulares com carregamentos variados, aplicando o modelo
analitico desenvolvido por Radi (2011) e outros pesquisadores, e comparar com 0

uso de métodos numéricos.

A aplicacdo direta destes métodos é notada na indUstria aeronautica: em juntas por
rebitagem em componentes estruturais, como por exemplo, na ligacdo entre a
fuselagem e as cavernas ou reforcadores. Com a utilizacdo de ligas de aluminio,
atualmente, as juntas rebitadas tornaram-se o principal modo de fixacdo (Megson,
1999).

Além desta indlstria, sdo observaveis outros campos de aplicacdo, como por
exemplo, na fabricacéo de tlneis, em que sdo necessarias previsdes de movimentos e
mudancas de tensdo nas superficies trabalhadas nos bordos do tunel (Carter &
Booker, 1983).
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2 REVISAO BIBLIOGRAFICA

Neste capitulo serdo revistos alguns conceitos basicos da Teoria da Elasticidade,
necessarios a compreensdo do escopo do trabalho, e serdo apresentadas as pesquisas

mais relevantes realizadas na area.

2.1 Conceitos basicos

2.1.1 Estado plano de tensao

O estado plano de tensdo é obtido quando uma chapa fina é carregada em seus
contornos, cuja distribuicdo de carregamentos é uniforme ao longo da espessura e
paralela ao plano da chapa. Como sdo nulas as componentes de tensao o, Ty, € Ty,
nas duas faces da chapa, pode-se admitir que também o serdo no interior da chapa.
Desta maneira, o estado de tensdo, independente de z, é caracterizado apenas por oy,
0y € Ty, (Timoshenko & Goodier, 1980).

2.1.2 Fungéo de tenséo de Airy

A solucdo de problemas bidimensionais se resume a integrar as equag0es diferenciais
de equilibrio para atender as condi¢Ges de contorno e a equacao de compatibilidade
de deformacdes. Para resolver estas equacOes, usualmente € utilizada a funcdo de
tensdo de Airy y, que deve satisfazer a equagdo biharmonica a seguir (Megson,
1999).

AAy =0 (1)

No caso de o problema ser formulado em coordenadas bipolares, a eq.( 1 ) €
modificada (Jeffery, 1921).
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2.1.3 Concentracao de tenséo

A presencga de entalhes, orificios, ressaltos etc., em pecas estruturais, leva a uma
modificacdo da distribuicdo de tensdes, e consequentemente & ocorréncia de niveis
mais elevados de tensdo nas proximidades destes elementos concentradores de
tensdo. O fator de concentracdo de tensdo é definido, para o caso de tensdo normal,
conforme a eq.( 2 ), onde g, € a tensdo nominal (uma relacdo entre o esforgo
aplicado e a geometria do elemento que resulta na tensdo média) e 0,4, € a tensdo
méaxima na borda do elemento concentrador de tensdo, como um furo numa chapa
(Peterson, 1966).

Omax (2)

Unom

Kt:

2.2 Orificios multiplos em chapa sob tenséo

Em componentes estruturais, a presenca de orificios gera concentracdes de tensbes
que podem resultar em propagacao de trincas no material, levando a sua falha. Deste
modo, torna-se imperativa uma avaliacdo precisa do fator de concentracdo de tenséo

nos componentes, de modo a garantir integridade estrutural e seguranga em servico.

2.2.1 Solucéo de Jeffery

A solucdo completa dada em coordenadas bipolares foi feita, inicialmente, por
Jeffery, onde a familia de curvas obtidas tomando-se uma das coordenadas (o ou B)
com valor constante corresponde a uma familia de circulos coaxiais (circulos cujos
centros compartilham um mesmo eixo); ou seja, ha dois eixos e duas familias de
circulos, como pode ser visto na Figura 1. Esta solucdo possibilita tratar de
problemas como: chapa infinita contendo dois orificios circulares, chapa semi-
infinita com apenas um furo e disco circular com um furo excéntrico. As formulas de
deformacgéo e tensédo foram deduzidas com uso da fungdo de tenséo de Airy e de
mudanga de sistema de coordenadas (Jeffery, 1921). A Figura 2 ilustra as

coordenadas (o e B) utilizadas por Jeffery.
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Figura 1 — Familias de circulos coaxiais (Timoshenko & Goodier, 1980)

A funcdo de tensdo é obtida a partir de uma expressdo geral, e seus coeficientes sdo
determinados quando o carregamento na borda da chapa é expandido em séries de
Fourier, pois o sistema como um todo estd em equilibrio. No mesmo trabalho,
algumas aplicacOes séo estudadas, como, por exemplo, o caso de um cilindro com
furo excéntrico, cujas faces estdo carregadas com pressdes hidrostaticas diferentes, e
0 caso de uma chapa semi-infinita com furo circular sob pressdo uniforme, que é o

caso das tensdes proximas de um rebite, em uma chapa (Jeffery, 1921).

Figura 2 — Esquema geral de coordenadas (Jeffery, 1921)
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Porém, o problema de uma chapa contendo dois furos iguais ndo foi trabalhado em
sua plenitude. Um pouco diferente da solucdo de Jeffery, Ling (1948) propés uma
aproximacdo similar que correspondia a varios sistemas fundamentais de tensdo
atuando na chapa. Uma funcgéo biharménica foi adicionada ao sistema de tensdes de
tal maneira que, no infinito, ndo houvesse nenhuma tensdo. Os coeficientes
paramétricos envolvidos na solucdo foram ajustados de modo a satisfazer as
condig0es de contorno nos bordos dos furos. Tais coeficientes foram calculados com
o0 auxilio de coordenadas bipolares, obtendo-se, ao final, expressdes explicitas para
eles. Foram discutidos trés sistemas fundamentais de tenséo, a saber: tenséo biaxial e
tensdo uniaxial (em cada direcdo, longitudinal e transversal, separadamente). Em
particular, foram calculados os valores maximos de tensdo (Figura 3). Além disso,
foram apresentadas as férmulas para a tensdo ao longo dos bordos dos furos. O caso

limite, em que os furos sdo tangenciais, também foi discutido (Ling, 1948).
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Figura 3 — Tensdo maxima (Ling, 1948)

2.2.2 Chapa com reforgos ou incluses
De modo a considerar reforgos (de mesmo material que a chapa) em ambos o0s

orificios, uma solucéo analitica foi desenvolvida por Dhir (1968) para a analise de
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chapas sob carregamentos biaxiais. Um parametro adimensional proposto pelo autor
foi definido como a razdo entre a area seccional de material removido e a area total
de reforco (area reposta). Deste modo ha apenas dois valores paramétricos neste
método, a saber: a razdo que governa o tamanho e a separacdo dos orificios, e a
quantidade de material de reforco. O método de solucdo foi de sobrepor ao estado
fundamental de tensbes (sem os orificios) um sistema auxiliar de tensdes que nao
afetasse os carregamentos, mas que ajudasse a satisfazer as condi¢Ges de contorno
dos orificios reforcados. Ou seja, uma funcdo de tensdo auxiliar foi adicionada a
funcao de tensdo fundamental de Airy. A funcédo auxiliar de tensdo utilizada foi a
formulada por Jeffery, anteriormente. As tensdes foram obtidas em coordenadas
bipolares como séries infinitas de Fourier, cujas convergéncias numéricas eram
governadas pela razdo entre raio dos furos e o espacamento entre eles. Os resultados
foram computados como fatores de concentragdo de tensdo para um numero de

geometrias de furos e reforgos que frequentemente ocorrem na pratica (Dhir, 1968).

Recentemente, Radi e Strozzi (2009) apresentaram uma solucdo analitica para
tensdes e deformacbes em um disco elastico e isotropico induzidas por ajuste com
interferéncia de uma inclusdo circular, mas excéntrica ao disco. O disco era
submetido a tensdes normais uniformes em sua borda externa. A incluséo era do
mesmo material que o disco e ambos o0s elementos estavam ou em estado plano de
tensdo ou em estado plano de deformacédo. Foi admitida a hipdtese de contato sem
atrito entre as duas pecas para que, assim, houvesse apenas pressdes de contato
normais entre os dois corpos. A solucdo foi obtida usando a expressdo geral de
Jeffery para uma funcdo de tensdo biharmdnica em coordenadas bipolares, com a
funcdo de tensdo de Airy na forma de séries infinitas de Fourier para os campos de
tensdo e deformacdo. Os resultados mostraram que a tensdo maxima efetiva de von
Mises devido a interferéncia com a inclusdo ocorreu em ajustes com maior
excentricidade, mas ela se afasta do eixo de simetria para pequenas excentricidades
(Figura 4) (Radi & Strozzi, 2009) .
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Figura 4 — Variacao da tenséo efetiva de von Mises perto da incluséo circular, normalizada por

p, para menor (a) e maior (b) excentricidade (Radi & Strozzi, 2009)

2.2.3 Chapa com furos de tamanhos diferentes

Para o caso de furos circulares de tamanhos diferentes (Figura 5), Iwaki e Miyao
(1980) propuseram uma solucao exata para as tensdes em uma chapa infinita sob trés
carregamentos fundamentais: tensdo uniforme em direcao arbitraria, pressao interna
em um furo, um furo sob cisalhamento uniforme. A funcéo de tensdo requerida foi
definida como uma soma de trés fungdes de tensdo: uma funcdo de tensdo base
(situacdo de uma chapa infinita com um furo circular sob tensdo) somada a outras
duas que especificavam o sistema de tensdes necessario para satisfazer as condicdes

de contorno, tanto nas bordas dos furos quanto no infinito (Iwaki & Miyao, 1980).
Y
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Figura 5 — Geometria e sistema de coordenadas (Iwaki & Miyao, 1980)

Apos a escolha de ambas as fungdes, as condi¢fes necessarias para a determinagédo

de seus coeficientes foram reduzidas a um problema de solugdo de um sistema de
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equacOes lineares. Expressdes para a tensdo circunferencial nas bordas dos furos
foram explicitamente deduzidas e os fatores de concentragdo de tensdo foram
calculados. As tensdes em uma chapa infinita com dois furos tangentes de tamanhos
diferentes também foram discutidas, como na Figura 5, quando d equivale a soma

dos raios dos furos (lwaki & Miyao, 1980).

Uma solugédo geral foi proposta por Green (1940) para problemas de distribuicdes
generalizadas de estado plano de tensdo em uma chapa infinita contendo orificios
circulares de tamanhos variados e posi¢Ges arbitrarias, sujeitos apenas a certas
condi¢Bes de convergéncia da solucdo. Foi utilizada uma funcdo de tensdo para o
estado plano de tensdes na auséncia de orificios. De modo a permitir o efeito dos
orificios, foi necessario um conjunto de fungbes de tensdo para cada furo, que
resultasse tensdo nula no infinito e uma expressao de valor Unico para as tensdes e
deformacgdes. Utilizando coordenadas polares fixas em cada orificio, ele indicou o
método para estender os resultados de modo a permitir o efeito de algumas condicdes
de contorno. O caso particular de uma chapa infinita sob tensdo contendo trés furos
em sequéncia foi discutido. Em seguida foram obtidos alguns valores numéricos e
comparados com experimentos ja antes realizados, apesar da ndo consideragdo dos
efeitos de borda (Green, 1940).

Tais resultados foram, com auxilio de transformagdes de coordenadas, utilizados por
Hoang e Abousleiman (2008) para formular uma solugéo para a situacédo de uma
chapa infinita com dois furos iguais ou diferentes sujeitos a uma tensdo uniforme ao
infinito e a pressdes na regido interna dos furos. Apesar da possivel complexidade,
esta aproximacdo pode ser generalizada para um grupo arbitrario de furos circulares
de qualquer tamanho (Hoang & Abousleiman, 2008).

2.2.4 Utilizacéo de furos de alivio de tensdes

A concentracdo de tensdes causada por um orificio pode ser aliviada com a utilizacéo
de outros orificios menores, na proximidade do furo original, como exemplificado na
Figura 6, suavizando a trajetdria do fluxo de tensBes principais causadas pelo furo
original (Heywood, 1952). Seguindo este principio, Erickson e Riley (1978) fizeram
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um estudo sistematico utilizando métodos de foto-elasticidade bidimensional para
determinar os tamanhos e posi¢Oes otimizadas para os furos auxiliares para certo
namero de chapas com diferentes furos centrais e razbes entre o diametro e a

espessura da chapa (Erickson & Riley, 1978).
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Figura 6 — Um furo com dois furos de alivio na diregdo de cisalhamento. A esquerda, em

sequéncia, a direita, lado a lado (Neuber, 1985)

Meguid (1986) fez um estudo extenso sobre elementos finitos para o estado plano de
tensdo com diferentes configuracbes de furos de alivio mediante a concentragdo de
tensdes em uma chapa com carregamentos uniaxiais e dois furos alinhados (Figura
7). O estudo revelou que a introducdo destes furos ajudou a suavizar a trajetéria do
fluxo de tensdes principais e reduziu os efeitos do fator de concentracdo de tenséo,
além de melhorar a resisténcia e reducdo de peso. Com esta mudanca nos valores

maximos de tensdo, houve uma melhora na vida a fadiga (Meguid, 1986).

Em um estudo posterior, uma solucdo geral descrevendo a interagdo entre o furo
principal e um furo de alivio com posigdo arbitraria — sob condic¢des de carregamento
uni e biaxiais — foi formulada por Meguid e Shen (1992). A andlise baseou-se nos
potenciais complexos de Muskhelishvili, em um apropriado procedimento de
superposicdo e em uma expansdo em series de Laurent, cujos coeficientes foram
determinados a partir da condicdo de auséncia de tensdes nos bordos dos furos
(Meguid & Shen, 1992).
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Figura 7 — Exemplos tipicos de modelos de elementos finitos para: (a) um quadrante para o caso
onde d = D/3, (b) um quadrante para o caso onde d; = 2D /3, (c) um quadrante para o caso
onded, = D/4 e d; = 2D/3 (Meguid, 1986)

Em particular, a variacdo na tensdo circunferencial e o fator de concentracdo de
tensdes no furo principal foram obtidos em uma forma geral assintética, enquanto
que expressdes de forma fechada explicitas pertencentes a solucdo de quarta ordem
foram desenvolvidas utilizando uma técnica apropriada de perturbacdo. SolucGes de
ordem superior foram computadas e usadas para proporcionar uma descrigdo
detalhada dos efeitos tanto dos carregamentos aplicados nos contornos quanto das
configuracdes dos furos de alivio com respeito ao fator de concentracdo de tensdes
nos furos. Também foram estudados alguns casos com maultiplos furos. Este trabalho
proporcionou uma ferramenta de design quantitativa e uma viséo valiosa do efeito de
furos de alivio na distribuicdo de tensdes no furo principal em estruturas de
engenharia (Meguid & Shen, 1992).

2.2.5 Analise de multiplos furos circulares

Um conjunto de furos circulares dispostos em zigue-zague é um importante modelo
de descontinuidades aleatoriamente distribuidas em materiais, além de ser um

problema bésico de concentraces de tensdes. Atraves de uma andlise tedrica de um
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conjunto genérico de furos circulares em zigue-zague em um sdlido infinito sob
tensdo uniaxial, Isida e lgawa (1991) obtiveram resultados numéricos para as tensdes
méaximas, para o fator de concentracdo de tensdo e para o efeito da perfuracdo na
rigidez a tensd@o do solido para diferentes tamanhos de furo e posicionamentos. Nesta
analise, foram utilizadas regides unitarias adequadamente definidas e foi assumido
potencial de tensdes complexo na forma de séries de Laurent, cujos coeficientes
foram determinados através das condi¢Ges de contorno da regido utilizada (como, por
exemplo, o triangulo ODF da Figura 8). Para o célculo numérico, foi utilizado um
método baseado em forcas e deslocamentos resultantes de elementos com parametros
geométricos definidos (razdo de distancias entre furos e raios); a porosidade do
solido entdo foi calculada de modo a definir um fator adimensional para o fator de
rigidez a tensdo (razdo entre 0 modulo de Young aparente e o do material original,
sem furos). Os casos extremos também foram considerados, isto €, em que €
produzida uma sequéncia de furos na dire¢do longitudinal ou transversal, e o caso de
furos em contato. Os resultados foram convenientemente ajustados em férmulas

polinomiais para aplicacdes de engenharia (Isida & lgawa, 1991).
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Figura 8 — Conjunto duplo e periddico de orificios circulares em zigue-zague em um sélido

infinito sob tracéo (Isida & lgawa, 1991)

Um método de alternancia foi proposto por Ting, Chen e Yang (1999) para a analise
de interacdo entre varios orificios em um dominio infinito bidimensional.
Inicialmente, foi derivada uma solugédo analitica para um Unico orificio circular em

um dominio sob tensbes de tracdo arbitrarias. Embora esta solucao analitica ja tenha
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sido desenvolvida pelo método do complexo de Muskhelishvili em formas gerais, a
solucdo el&stica correspondente a tragdes arbitrarias expressa na forma de séries de
Fourier foram completamente derivadas utilizando a funcdo de tensdo de Airy,
objetivando simplicidade e eficiéncia. O problema de um sdélido bidimensional
infinito contendo orificios circulares em estado plano de tensdo, conforme a Figura 9
(@), pode ser expresso como superposi¢cdo de dois casos: 0 caso em que uma forca
externa atua no infinito na auséncia de orificios (Figura 9 (b)) e o caso com multiplos
furos circulares sob tracGes ficticias ao longo dos bordos dos furos. Assim, a solucao
analitica anterior foi entdo utilizada no processo de superposicOes iterativas
sucessivas capaz de satisfazer as condi¢6es de contorno para cada orificio circular do
problema. Para a validagdo deste método, foram resolvidos diversos problemas de
chapas perfuradas. As interacGes entre os orificios foram estudadas em detalhe, e 0s
resultados computados assemelharam-se as solugbes de referéncia disponiveis,
indicando a exatiddo e a eficiéncia do método e mostrando que com uma técnica
simples e minimo esfor¢o computacional é possivel obter fatores de concentragdo de

tensdo precisos (Ting, Chen, & Yang, 1999).

L&l

Figura 9 — Esquema de superposi¢do para o método de alternancia (Ting, Chen, & Yang, 1999)
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2.2.6 Consideracgdo da pressao interna

As interacOes elasticas entre furos com pressdo interna foram analisadas no trabalho
de Davanas (1992). Utilizando métodos matematicos rigorosos, formulas foram
deduzidas para a descricdo destas interacdes. Foram obtidas solucdes para as
iteracdes entre: dois furos de igual tamanho e pressdo; um furo pressurizado e outro
de igual tamanho sem pressao interna; um furo pequeno e pressurizado e um maior
sem pressao interna; e entre dois furos de mesmo tamanho com tensdes em suas
superficies de magnitude igual, mas de sinais opostos (ou seja, um pressurizado e
outro com tensdes de tracdo em sua superficie). Foi provado que, ao contrario do que
era aceito até entdo, todas as interacOes elésticas entre furos sdo repulsivas. A
magnitude desta forga repulsiva tende a aumentar com o decréscimo da distancia
entre furos. Também foi observado que a periferia dos furos foi distorcida e ndo se
manteve circular, o que € uma importante caracteristica da interacdo entre furos
(Davanas, 1992).

2.2.7 Impacto da excentricidade na interacéo elastica

InteracBes elasticas entre furos de diversas excentricidades, assim como entre
fissuras, foram analisadas por Tsukrov e Kachanov (1997). Foram examinados 0s
efeitos fisicos produzidos pelas interagfes e os impactos da excentricidade do furo
nestes efeitos. Foram objeto de interesse particular combinacgdes de furos de diversas
excentricidades e tamanhos com forte interacdo, jA que tipicamente ha poros ou
microfissuras em materiais estruturais. Os impactos foram examinados em um
modelo de orificios elipticos, incluindo orificios circulares e fissuras nos casos
limite. Utilizando o método de alternancia de Neumann-Schwarz, as interacdes
foram estudadas de modo a tratar das seguintes questdes: impacto da excentricidade
dos furos nos efeitos de interacdo; interacdes entre furo grande e furo pequeno
(como, por exemplo, a Figura 10); e padrdes provaveis de microfratura em

combinacGes de defeitos de diversas formas (Tsukrov & Kachanov, 1997).

27



a) ,O
>—\‘—’ O
b) ©
&~ o 0
“_
0
‘ [ —2
c) o
I
| 0
d) /' o
o
= \‘_HO

Figura 10 — Padr&es provaveis de microfratura para (a) fissura e microfuro; (b) furo grande e
microfuros de varias formas; (c) furo alongado e microfuros a pequenas distancias; (d) furo
alongado com microfuros a longas distancias. As flechas mostram a dire¢do provavel de
propagacao de fratura (Tsukrov & Kachanov, 1997)

As interacdes entre furos podem tanto amplificar quanto atenuar tensdes, dependendo
da posicéo entre os furos, suas excentricidades e 0 modo de carregamento remoto.
Padrbes de concentracdo de tensdo em tais combinacGes de furos implicam certos
padrdes de microfratura em materiais com multiplos defeitos. Foi observado que os
efeitos de interacdo entre furos (amplificando as tensdes) sdo maximizados em

configuragdes onde a simetria é levemente perturbada (Tsukrov & Kachanov, 1997).

2.2.8 Integrais independentes do trajeto: Integral J

A integral independente do trajeto J da mecénica da fratura esta relacionada as taxas
de dissipacdo de energia associadas a movimentos uniformes, rotagdo ou expansao
de cavidades ou fissuras em materiais com elasticidade linear ou ndo. Formas de
variaveis complexas foram apresentadas por Budiansky e Rice (1973) para as leis de

conservacdo em casos de elasticidade linear isotropica em estado plano de tenséo.
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Deste modo, para uma deformacdo bidimensional, a integral J, definida pela primeira
componente do vetor da eq.( 3 ), em que u € o vetor dos deslocamentos, C € a curva
fechada no plano x; x,, W é a densidade de energia e T 0 vetor de tensdes atuantes
no lado externo de C com versor normal n, possui 0 mesmo valor — ndo
necessariamente zero — para todos os trajetos que circundam um furo ou fissura
(Figura 11). Asegs.(4) e ( 5) descrevem as integrais de Knowles-Sternberg no caso
bidimensional, em que €;;, € o tensor de alterndncia. Sob as mesmas condicdes de /,
L torna-se zero. Para M se tornar zero, é necessario que W seja uma funcao
quadrética (Budiansky & Rice, 1973).

(3)
]k = f (Wnk — Tiui,k) dl
Cc
(4)
L= % E3ij (Wx]nl + Tiu]' — Tkuk,in) dl
c
(5)

M = % (Wxini — Tkuk,ixl-) dl
C

Figura 11 — Um contorno envolvente de um defeito ilustrando a integral independente do trajeto

(Honein, Honein, & Hernnmann, 2000)

Utilizando a solugdo para duas inclusbes circulares elésticas sob tensdo de
cisalhamento, Honein, Honein e Herrmann (2000) avaliaram as forgas no material.
Elas podem ser definidas como mudancas energéticas (por exemplo, taxas de
dissipacdo de energia) acompanhando translacdo unitaria, expansdo e rotacdo de
inclusdes. O vinculo entre as inclusdes e a matriz foi assumido como perfeito e o0s

calculos foram executados usando o conceito das integrais independentes do trajeto
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J, M e L. Os resultados obtidos sdo validos para carregamentos arbitrarios. Estes
resultados foram exemplificados no caso de uma chapa sob tensdo uniforme de
cisalhamento com dois orificios circulares: eles atrairam um ao outro e as integrais J
e M cresceram sem limite quando os orificios se tornaram infinitamente préoximos.
Uma anélise cuidadosa da expressdo destas integrais resultou que as integrais ] e M
tendem ao infinito proporcionalmente a 1/+/€, onde € é a distancia adimensional
entre os orificios (como ilustrado na Figura 12). Foi também notado que a integral J
decai rapidamente a zero quando os orificios situam-se a uma distancia de quatro ou
cinco raios. Foram considerados e discutidos outros exemplos com dois orificios
circulares e inclusdes para varios campos de carregamentos. Notou-se que, com
variacdo da tensdo de cisalhamento remota, as forcas no material podem ser atrativas
ou repulsivas, dependendo da distancia de separacdo entre os orificios. (Honein,
Honein, & Hernnmann, 2000).

e

dfﬁ:

Figura 12 — Gréafico de M*, a integral adimensional M, como funcéo da distancia de separacdo
d* = d/a4 entre os dois orificios, com a chapa sob cisalhamento uniforme (Honein, Honein, &

Hernnmann, 2000)

2.2.9 Integrais independentes do trajeto: Integral M

A integral M teve seu conceito expandido por Hu e Chen (2009) para o estudo da
degradacao de uma tira plana fragil causada por evolucéo irreversivel: a coalescéncia

entre dois furos sob carregamento crescente. O foco do estudo foi a mudanca da
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integral M antes e depois da coalescéncia de dois furos vizinhos. Foram estudados
em detalhe diferentes orientacBes dos dois furos e diferentes trajetos de coalescéncia
conectando os bordos destes. Através de uma analise de elementos finitos (Figura
13), foi constatado que diferentes orientagdes dos furos levam a diferentes valores
criticos da integral M, nos quais a tensdo maxima circunferencial (ou seja, a tensao
ao longo dos bordos de um furo) atinge a resisténcia do material e a coalescéncia
ocorre; além disso, que o valor critico minimo da integral M corresponde
aproximadamente ao carregamento critico minimo de tensdo quando a orientacdo
varia. Concluiu-se que a integral M desempenha um importante papel na descri¢cdo
da medida da fratura e de sua evolucdo. Porém, isto apenas fornece algumas
caracteristicas variaveis externas. Isto significa que o mecanismo completo de falha
devido a evolucdo da fratura ndo pode ser governado por apenas um parametro, e sim
que h& uma relacdo entre a integral M e a redugdo de mddulo de elasticidade efetivo
quando a orientacdo muda (quanto maior a integral, maior a reducfo). E de grande
significancia que a integral M esta inerentemente relacionada a mudanga da energia
potencial total para a fratura em materiais frageis independentemente das

caracteristicas da fratura e de sua evolu¢cdo (Hu & Chen, 2009).

Figura 13 — Malhas de elementos finitos antes da coalescéncia (acima) e ap0s (abaixo) para o0s
angulos de inclinacdo 11,25° e 22,5°, respectivamente (Hu & Chen, 2009)

2.2.10 Integrais independentes do trajeto: Integral L

O conceito da integral L também foi estendido por Hu e Shen (2011) para estudar a
degradacdao de um material elastico fragil na coalescéncia entre dois furos vizinhos

numa chapa plana sob tensdo de tracdo; eles também estudaram a mudanca da
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integral L antes, durante e depois da coalescéncia. Utilizando analise por elementos
finitos, estudou-se a influéncia de diferentes orientac6es dos dois furos, de trajetos de
coalescéncia diferentes conectando os bordos dos dois furos e de diferentes
comprimentos de trinca entre os bordos dos furos na integral L. Foi constatado que
tendéncias variaveis da integral L antes, durante e depois da coalescéncia de
diferentes orientacbes de furo apresenta caracteristicas muito diferentes.
Diferentemente da integral L para um Unico defeito, para dois furos antes da
coalescéncia ela podia ser positiva ou negativa, representando dissipagdo ou absorgéo
de energia induzida pela rotacdo dos furos, enquanto que tal caracteristica
desaparecia ap0s a ocorréncia da coalescéncia dos furos e consequentemente a
aparicdo de um defeito complexo unico. Concluiu-se que a integral L realmente
desempenha um papel importante da descricdo da medida da fratura e de sua
evolucdo. Portanto, além da integral M, a integral L € outra caracteristica externa que
deve ser adotada na descricdo da evolucdo da fratura em materiais frageis. Desta
maneira, indica-se que ha uma ligacéo entre as integrais invariantes e a mecénica da
fratura (Hu & Chen, 2011).

2.2.11 Outros avangos e aplicacdes das integrais independentes do trajeto

A partir de uma revisdo de 261 referéncias, Chen e Lu (2003) puderam observar que
novas aplicagbes para as integrais independentes do trajeto foram identificadas,
focando em quatro areas de aplicacdo: i) fratura mecénica de materiais funcionais
(por exemplo, ceramicas piezoelétricas e ferromagnetos), que exibem propriedades
diferentes daquelas encontradas em problemas puramente mecéanicos devido ao
acoplamento com efeitos elétricos, magnéticos e térmicos; ii) danos mecanicos em
trincas multiplas interativas, assim como suas novas medicdes de fratura; iii)
integrais de dominio, integrais de dois estados e suas aplicacbes em determinados
pardmetros dominantes nas trincas tridimensionais e o esclarecimento do papel de
termos singulares de ordem elevada nas expansoes das fungdes principais de William
e iv) nanoestruturas (Chen & Lu, 2003).

Dentre outras varias conclusées, Chen e Lu (2003) constataram que 0S papéis
desempenhados pelas integrais invariantes na fratura de materiais funcionais (como

por exemplo, piezoelétricos) sdo bem diferentes daqueles em materiais puramente
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mecanicos. Apesar da diferenca entre comportamentos mecanicos e elétricos, é
possivel tratar ambos de maneira semelhante utilizando o conceito de tensdes
generalizadas e novas leis de conservacdo de J, foram estabelecidas para estes
materiais com microtrincas. Além da conhecida teoria da mecénica da fratura, a
integral M fornece uma nova e mais objetiva descri¢cdo do dano por microtrincas: ela
representa a dissipacdo de energia devido as microtrincas e, deste modo, pode ser
utilizada como medida quantitativa de dano. Por fim, a relacdo simples entre as
integrais L e M se mantém até para fortes interacGes de multiplas trincas. Assim,
estas duas integrais ndo sdo independentes, mas representam duas taxas diferentes de

dissipacéo de energia (Chen & Lu, 2003).
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3 MATERIAIS E METODOS

Aqui serdo descritos, além de outras ferramentas necessarias, 0s programas a serem

utilizados na execucgéo deste Trabalho de Conclusédo de Curso, a saber:

Tabela 1 — Relacao de programas a serem utilizados

Andlise analitico numérica Analise numérica

Maple Patran e Nastran

3.1 Configurac6es dos estudos de caso

Nesta secdo serdo definidas as configuracdes de alguns casos para analise. O material
sera definido como comum a todos e havera variacdo de certos parametros. De modo
a possibilitar comparacdo com a literatura, os seguintes parametros serdo utilizados

tanto na abordagem analitica quanto na numérica, para uma analise preliminar:

Parametros do material
o E =210 GPa — Mdbdulo de Elasticidade

o v = 0,3 — Coeficiente de Poisson

Parametros geométricos dos furos
o 1, = 15,5 mm — Raio do primeiro orificio circular
o 1nr, = 18,5 mm — Raio do segundo orificio circular

o d = 44 mm — Distancia entre os centros dos furos

Carregamento nos bordos da chapa
o oy =1-Tensdo transversal
o 055 = 1—Tensdo longitudinal

o T13 = 0—Tensdo de cisalhamento

Carregamento no interior dos furos
o p; = 0—Pressdo no primeiro orificio

o p, = 0 - Pressdo no segundo orificio
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Em seguida variar-se-80 parametros como: carregamentos externos (tensdes
transversal, longitudinal e de cisalhamento), pressdes no interior dos orificios,
tamanhos dos raios destes. E, por fim, sera realizada uma analise no caso de furos em

posicao relativa arbitraria.

3.2 Meétodo analitico-numeérico

O presente trabalho seguira o modelo proposto por Radi (2011) com as devidas
modificacbes. As suas deducdes e referéncias serdo mantidas de modo a explicitar o
raciocinio adotado. Em seguida, sera mostrado o programa implementado, utilizando
as solugbes deduzidas, para o célculo das tensGes e fatores de concentracdo de tensao

almejados.

3.2.1 Descricdo do problema em coordenadas bipolares

O problema é composto por dois orificios circulares dispostos, inicialmente, lado a
lado em uma chapa infinita, sob estado plano de tensées. Os dois furos séo descritos
pelos seus raios internos r; e r,, enquanto que a posicdo relativa entre eles é descrita
pela distdncia d entre seus centros, conforme ilustra a Figura 14. Além dos
carregamentos externos (tensdes de tracdo e cisalhamento), podem existir pressoes

internas em cada furo.

‘i.,Tl

o 8

R

—

— 8

a

Figura 14 — Sistema de coordenadas bipolares para o problema de dois furos diferentes de raios
Iy € Iy, COM pressdes internas p, e p, e tensdes normais uniformes 673 € o3, e de cisalhamento

175 aplicadas no infinito (Radi E. , 2011)
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As coordenadas cartesianas (xq,x,) sdo transformadas em coordenadas bipolares
(a, B) conforme Jeffery (1921), definindo uma relacdo entre os planos complexos

z=x1+ix,ew=a—1if, conformeaeq.(6).

Z:acoth(%)za-ew+1 w:ln(”—a) (6)

e®—1 z—a

Através das relacOes entre as varidveis complexas z e w, € imediato obter as relagdes

abaixo:
_ asinh(a) _ a-sin(p)
X1 = cosh(a)—cos(pB) X2 = cosh(a)—cos(B) ()
E também:
@ g __ 2% g _ xitxj-a? (8)
e“sin(p) = (x1—a)2+x3 e cos(f) = (x1—a)?+x3

De onde, através da eliminacdo de B das egs.( 8 ), obtém-se a eq.( 9 ) que descreve
uma familia de circulos coaxiais com centros no eixo x; a uma distancia a - coth(a)

da origem e raio a/sinh(a).

2
(x; —acoth(a) ) +x = ——— (9)
sinh( o)
E, com a eliminacdo de o das egs.( 7 ), obtém-se a eq.( 10 ) que descreve uma nova
familia de circulos coaxiais com centros no eixo x, a uma distancia a/tg(f) da
origem e de raio a/|sin(f)|:

xi + (xz B tg%(m)z - (sina(ﬁ))z (10)

Todos os parametros geométricos podem ser definidos em termos dos raios dos furos
e a distancia entre os centros dos furos. As superficies dos furos circulares sao
definidas pela adocdo de um valor constante para a coordenada «, ou seja, quando
a=a,>0¢ea=a, <0, como explicitado na Eq.( 11 ). Na Eq. ( 12 ) também sdo
mostradas a posi¢do dos polos (a) e a distancia entre os bordos dos furos (&).

| &=t

= - h| —
(X2 arccos [ 5 d?‘z

2 2
1 dz-l-r] —er

= h| —
OL] arccos [ 5 d?‘l

(11)
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2 2\2 2.2
a:i\/(dz—rj —r2> —4r1 r,
2 d

5=d—r1—r2 (12)

Quanto ao angulo polar 6, este é definido para um valor constante de a e é associado

com a coordenada bipolar S pelas relagdes da eq.( 13).

cosh(a) cos(B) — 1

sinh(|a]) sin(B)
cosh(a) — cos(B) (13)

cosh(a) — cos(B)

sin(0) = cos(0) =

3.2.2 Campos de tensdo fundamental e auxiliar

O problema foi formulado utilizando as fungdes de tensdo de Airy y(xq,x;) que,
conforme Jeffery (1921), devem satisfazer a equagdo biharménica AAy, isto €, em

coordenadas bipolares:

ot ot ot i i _
V) T e () T ea () F 2z () =27 () #4470
14
I X (cosh(oc) — cos(B)) (14)
X &
E, portanto, as tensdes sdo dadas pelas equacdes:
0%h oh oh
c = aﬁzx “(cosh(a) —cos(B)) — a—é-sinh(o&) — a—Bx-sin(B) + hx-cosh(oc)
a2hx ahx ‘ ahx .
GB: o -(cosh(a) —cos(B)) — E'Smh(a) - E'SIH(B) + hX'COS(B) (15)
0%h
o™ g (coh(o) —eos(B))

Mas, utilizando o principio da superposicdo, a funcdo de tensdo de Airy pode ser
decomposta na soma de uma funcéo de tensdo fundamental y(® — que corresponde a
tensdo uniforme aplicada no infinito — e uma funcdo de tensdo auxiliar Y™ —
responsavel por satisfazer as condi¢fes de contorno nos bordos do furo, mas que se
esvaem no infinito. A partir dos carregamentos externos aplicados no infinito, a
funcao de tensdo fundamental pode ser descrita em coordenadas bipolares conforme

aeq.(18), a sequir, pois:
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0) — o] 1 o 2 1 o 2
x©@ = —1x1x, + 5 011X2 T 202X

(16)'
E igual a
0) _ [J{"isinz(ﬁ)+o§%sinh2(a)—Zrﬁsin([ﬁ’)sinh(a) a? ,
A= (cosh(a)—cos(B))? 2 (17)
E resulta
i (0) _ o5isin®(B)+a55sinh?(a)—213%sin(B)sinh(a)
X - 2(cosh(a)—cos(B)) (18)
Deste modo, deduzem-se as tensdes fundamentais:
s = ! > (Gi‘(l — cosh(a) -cos(B))2 +
(cosh(a) — cos(B))
cZ-sinhz(oc)-sinz(B) —
21, (1— cosh(oc)~cos([3))~sinh(oc)-sin([3))
60 = 1 —- (oy,sinh* () -sin’(B) +
P (cosh(a) — cos(B))
G;'(l —cosh((x)-cos(B))2+ (19)

2.1::;-(1 — cosh(at) -cos(B) ) -sinh( ) ‘sin(B))

L 1 (o —0..)-(1 — cosh(a) -cos .
pe (cosh(a) —cos(B))2 <( 2 11) . (e)eos(p))

sinh( o) -sin(B) +

[e9)

T, (sinhz(a)-sinz(B) — (1 —cosh(a) -cos(B))z))

Em relacdo as tensGes auxiliares, Jeffery (1921) deduziu ndo sé a funcdo de tenséo
auxiliar correspondente (eq.( 20 )), mas também as tensdes auxiliares em fungéo de

varias constantes, conforme mostrado a seguir.

h;(l) = (Ba + KIn(cosh(a) —cos(B))) (cosh(a) —cos(B)) +

;(d)ncos(nﬁ) +y, sin(nB)) (20)

! Férmula corrigida: em Radi (2011), a Gltima parcela continha indice 2, enquanto que o correto é o
apresentado (indice 1).
2 Férmula corrigida: em Radi (2011), faltou elevar ao quadrado o termo do denominador.
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Onde
¢, =4, cosh(2a) + B, + C,sinh(2 )
v, =aq cosh(2a) + ¢ sinh(2 o)
¢ =4, cosh((n+1)a) + B, cosh((n—1) ) +
. . (21)
C, sinh((n+ 1) o) + D, sinh((n — 1) o)
\|In=ancosh((n +1)a) + bncosh((n — o)+
¢, sinh((n +1) &) +d sinh((n—1) o)
para n=>2. Com as constantes B, K, A,, By, Cy, a4, ¢, Apn, Bn, Cn, Dy, ay,
b,, ¢, d, a serem determinadas pelas condicdes de contorno, temos as

componentes de tensdo derivadas da funcao de tensdo de Airy auxiliar:

V= —%K(cosh(Za) — 2cosh(a) cos(B) + cos(2B)) —

o

— Bsinh(a) (cosh(a) — cos(B)) +

2 ; (cosh(ar) cos(nB) — n? (cosh(a) — cos(B)) -

cos(nB) + nsin(B) sin(nB)) + %wn [nz cos(B) sin(npB) — (n2 —1)-

cosh(a) sin(nB) — nsin(B) cos(nB))
-9, sinh( ) cos(nB) — v, sinh( ) sin(nB) )

o, = %K(cosh(Za) —2cosh(a) cos(B) +cos(2B)) +
Bsinh(a) (cosh(o) —cos(B)) + (22)

2 (cos(B) cos(nB) + nsin(B) sin(nP)) —

¢, sinh(a) cos(nB) + ¢, (cosh(o) — cos(B)) cos(nB) +
, (cos(B) sin(nB) —nsin(B) cox(nB)) ~

' sinh(o) sin(nB) + y” (cosh(a) —cos(B)) sin(n-B))

t. = -(Ksinh(a) + Bcosh(a)) sin(B) +

%Bsin(ﬂi) + (cosh(o) — cos( Zn (q) sin(nB) — v, cos(nB))

n=1
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3.2.3 Expanséo da tensdo em séries de Fourier

Utilizando o resultado obtido por Ling (1948) para a integral da eq.( 23 ), Radi
(2011) pdde obter o campo de tensdes fundamentais expandidos em séries de Fourier
com f variando de —m a i, conforme a eq.( 24 ).

T

cos(nB) a5 - 2me 1o (n + coth(|e]))
J (cosh(o) —cos(B))2 sinh(oc)2

(23)

o =5+ Z(Sncos(n[i) +5, sin(nB))
=l (24)
(0)

’L'ﬁa =1, + Z(Tnsin(nﬁ) +tncos(n[3))

n=1
Onde

s,=¢ 1 (o7 cosh(a) + oy sinh(lof)) 5, =2 (0, — 0,7 ) 2, sinh(|of)

T =2 (0';; — GIO:) g, sinh(ot)

n

5,= 47, sinh(c) (25)
tn=4rggn sinh(|o]) 1= _1-2 o 2ol

paran > 1. Onde:

gn:e‘nloc| (cosh(o) — nsinh(|o])) (26)

Assim, somando as tensdes fundamentais e as auxiliares, as tracdes totais nos bordos
dos orificios circulares (onde a = constante; @, ou a,) podem ser obtidas, como
descrito por Radi (2011) (egs.( 27 ) e (28)) e por Jeffery (1921).
6 =S+, %-(K-cosh(}oc) + B-sinh(2-a)) + (K-cosh(a) + B-sinh(at))-
K -1
cos(B) — 7-005(2-[3) + n;ﬁ ((d)nil —2-cosh(0t)~d>n +@ -

Z'Si“h(a)'q)*n + 2'”'Sn) rcos(n-B) +(*¥, | — 2, -cosh(a) + (27)

n—1

*
W, =2 sinh(0) + 2, ) sin(n-B) )
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T =1+ %wp’ = (K-sinh(0) + Bcosh(0))) sin(B) + 5 -sin(2:B) +

%z ((-@",_, +2-cosh(0)-@" —@" _ +2nT,):

n
_, —2cosh(o) ¥ +¥ +2-tn)-cos(n-[3))
Onde

qJ:(n—l)n(n—i—l)(bn ‘P:(n—l)n(n—i-l)wn

n n

. - (28)
@, =9, ¥ =ny,

3.2.4 Imposicéo das condicdes de contorno

O campo de tensdes deve atender as condigdes em duas areas principais:

) No infinito

i) Nos bordos dos orificios
O campo de tensbes gerado pela funcdo de tensdo fundamental proporciona, no
infinito, os carregamentos aplicados. Ao mesmo tempo, a funcdo de tenséo auxiliar

deve extinguir-se no infinito. Deste modo, como ja mostrado por Jeffery (1921), a

eq.( 29) deve ser satisfeita.

zA +B (29)

Para os bordos dos orificios circulares, a tensdo total deve ser igual as pressdes

internas em cada furo, isto é, p, no primeiro furo e p, no segundo furo. Ou seja:

Ga:_p(a) Tﬁa:() ) para a=a,a; (30)

Mas, com o auxilio de ( 27 ) aplicado em ( 30 ), podemos exigir que 0s termos do
tipo sen(nf) e cos(nB) sejam eliminados para n=20,1,2... Em particular,

desaparecendo com o0s termos constantes (n = 0), obtém-se, paraa = a; € @ = .

1 L lol (6 s
q)]:?Kcosh(Zoc) + EBsmh(2(x) — el (0' cosh( o) +0'2251nh(|0£|)) —p (o)

11 (31)
Y (a) =215 - e %lal
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Além disso, eliminando os termos com sen(nf) e cos(nf) naeq.(30), paran > 1,

sdo obtidas as equacdes a seguir, onde &, € 0 Delta de Kronecker.

® | —2® cosh(a) +@ _ —2@ sinh(a) +

2 (Kcosh(a) + Bsinh(a)) 8  -2K8 , +2nS,=0

_ P - (32)
Y _, 2‘I’ncosh(oc) +¥, , —2Y sinh( o) +2ns,=0
¥ _ —2cosh(a) ¥ +¥ . +21,=0
* * &
2@ cosh(e) —@ _ —@ . — 2(Ksinh(a) + Bcosh(a))§  +B3 ,+2T, =0 (33)

Aplicando, em ( 33 ), uma multiplicacio por e ¢! e somando paran = 1 ..., tem-
se:

* “lof . 2%
@1:2Ke||s1nh(0c)+B—4(0'22 )[de” sinh( o ] (34)

Se a eq.( 33 ) é multiplicada por senh(m — n)a, para m > 2, fazendo-se a soma

comn=1..m—1, utilizando (25) e ( 34 ), obtém-se:

m—1

@;=2Ke_m|a| sinh(o) + 4 (cr;; - 010:) { Z g, sinh((m —n) o) —

n=1
¢
sinh(m-o) Z _n'|a|]

Cabe ressaltar que as séries apresentadas em ( 34 ) e ( 35 ) convergem para valores

(35)

apresentados nas equacdes ( 36 ) e ( 37 ), reduzindo as equacbes (34 ) e (35) as

formas apresentadas em (38) e (39):

m—1

Z g, sinh((m —n) o) = %sign(o&) (w +2e" 1 coshor —mgm(a)) (36)
n=1 sinh o

it -2

Qg e S |a| (37)
sl " 4 sinh(|o])
CDT —2Ke sinh(a) + B <Gzo; — Glo:) ¢ 21 sign( o) (38)
cD; = 2Ke_m|a| sinh(o) — (Gzo; — 0'10;) mg, sign( o) (39)

De modo analogo, pode-se multiplicar as eqs.( 32 ) por senh(m — n)a, param = 2,

e efetuarasomacomn =1..m — 1, utilizando aseqs.(25), (31),(36)e (39),0
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que leva as equacbes ( 40 ) e ( 41 ), cuja série apresentada em ( 42 ) pode ser

simplificada, levando ao resultado apresentado em (43 ).

®, = -2Ke™"% (cosh() + msinh(lo])) — 6 (o5, —07) -

m—1 (40)
n;ngn sinh( (m — n) |of)
¥, =21, mg, (41)
:lillngn sinh((m — n) o) = % m(n? —1) ™ sinh(a) (42)
@, = -c"1% (2K (cosh(a) + m sinh(lo])) + (o5 — o7;) m (w? — 1) sinh(jof)) (43)

Do mesmo modo a equacdo ( 32 ) pode ser multiplicada por senh(m — n)a, para
m>=>2esomadacomn=1..m—1, usando ( 25 ), (41 ) e ( 42 ), o que resulta
(Radi E. , 2011):

m—1

¥ =1275| D, ng,sinh((m—n) o) =27 m(m® —1) "% sinh(a1) (44)

n=1

3.2.5 Determinacgéo das constantes desconhecidas

Vérios termos podem ser expressos em funcdo da constante K. Caso esta seja
calculada, é possivel determinar as constantes A;, B,, C; € B através da imposicao
das condigOes (31 ) e (38 ) nas fungdes ¢ () e ¢;(a) em a = a4 € @ = a,. Deste
modo, usando (28 ) e (21 ), obtém-se:

4, cosh(2ar) +B, +(, sinh(20) — %Bsinh(ZOL) =

1 - o0 o
7Kcosh(20c) —e Tl (Gncosh(oc) +0,, s1nh(]0c|)) —p (45)

24,sinh(20) +2C, cosh(2a) —B-2Ke sinh(a) — (0'; — G;:) e 2ol sign(a)

Que, caso seja avaliada nos valores constantes de a explicitados, as seguintes

constantes sdo determinadas:
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Ay = (cosh(or, + t,) (27(a, ) sinh(a,)? = 2/(os) sinh (o1, )7 + (g(o,)

— g(0,)) tanh( o, + 0(2)))

8, == (cosh(or, = t,) (27(a) sinh(a ) = 2(ct ) sinh(ot,)” = (g(ct)
+g(0,,)) tanh( o, — 01, + g(at,) sinh(2at, ) —g( o) sinh(20,) ) )

(46)
;= 7y (cosh(0 + ) (8(0) = (@) + (/(04) (o)) anh(g, +00)
/(o) sinh(20;) = (o) sinh(2 ) ))
. 2cosh(o, —ot,) ((/(,) +f<(x2)gtanh<oc1 —a,) +g(a,) —g(e)))
Onde
f(o) =2k e ¥ sinh(0) — (o5, — 077) 1 sign(a)
¢la) = 5 Koosh(20) = (07 cosh() + o sinh([of) ) —p (47)

DZZSinh((xl — ocz) (sinh(o&l)2 + sinh(ocz)z)

A partir da condicdo ( 31 ) pode-se determinar as constantes a, e c; utilizando as

funces ¢, () e Yy (@) ema = a; e @ = a,. Usando ( 21 ), obtém-se:

a, sinh(2a) + ¢, cosh(2 ) = ,L.{'; o2l (18)

Portanto, da eq.( 48 ), avaliada em a; e em a5, resultam:

T [e_2|a1| cosh(20t ) —e_2|a2| cosh<20c )]
T ) 7

1 sinh(Z o, —2a2)
2o 2l (49)
‘L'f; (e 2| 1|sinh(20L2) +e 2| 2| sinh(20c1>]
1 sinh(2 0, —2.0,)
A'introducéo de (21 ) em (28) leva a:
(Dn=n(n2 —1) (Ancosh(oc(n +1)) + C, sinh(a(n +1)) + B, cosh(a(n —1))
+Dnsinh(0c(n—l))) (50)
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@::n(n +1) (Ansinh(oc(n +1)) +Cncosh(0c(n + 1))) +n(n—1) (aninh(oc(n
—1)) +Dncosh((x(n - 1)))

Do mesmo modo, utilizando as eqs.( 43 ) e ( 39 ), pode-se determinar as constantes
A,, B, C,, D, para n > 2 através do sistema de equacdes formada por ( 50 )

avaliadasem a = a; € @ = a5, a saber:

A, =7 (P 0) @, (0) + P (0 0)) @ () +

0,(o0,) (DZ(O‘J) +0,(0y ) ‘D:;(O‘z))

B =—- (P_n(oc], az)'an(ocl) +P_n((x2, oc])'tbn(ocz) +

0_,(o az)'q)*n(az) +0_,(oy a])-dD*n(az))

T (Un(ocl,ocz)-QDn(oc]) + Un(ocz, oc])-d>n<oc2) +

(51)

*

(V (e 0,) +cosh(2ema, — (n = 1)-0,) )@ (o)) + V(o) @ ()

1
D = . (U_n(ocj, (12)-CDH(0L1) + U_n(ocz, oc])-(bn(az) +

*

V—n(“]’ oc2>-cl)*n((x1) + V-n((xZ’ (x])-CD n<(x2))

Onde @, (a) e ®;,(a) sdo dados pelas eqs.( 43 ) e (39), respectivamente, e

sinh(n 7 + &) sinh(n (§ —n)) —nsinh(n& + 1) sinh( - + 1)
n+1

P(&n) =
0,(&mn) =cosh(nn +&) sinh(n (§ —n)) + ncosh(n& +n) sinh(-§ +n)

cosh(nn + &) sinh(n (§ —m)) — ncosh(n& +n) sinh( - +n)
n—+1

U,(&m) = (52)
Vn(E_,,n) =sinh(nn + &) sinh(n (§ —m)) + nsinh(nE +n) sinh(-& +n)

H =2n (sinh(n ((x] — (xz) )2 —n? sinh(ocl — 0(2)2)

Aplicando a eq.(21) na ( 28), tem-se:

¥(o)=n(n*—1) (ancosh((x(n +1)) + b, cosh(o(n—1)) + ¢ sinh(o(n + 1))
+d,sinh(a(n —1))) (53)
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*

¥ (a)=n(n+1) (ancosh((x(n+ 1)) +Cnsinh(0c(n+ 1))) +

n

n(n—1) (bncosh(oc(n —1)) +dnsinh(0c(n — 1)))

Utilizando as eqgs.( 44 ) e (41 ), as constantes a,,, b, ¢,, d, para n = 2 podem ser
determinadas para o sistema formado pelas equagbes ( 53 ) avaliado ema =, e

a = a,, levando aos seguintes valores:

a =—- (P (oc ,ocz)-‘Pn(oc]) +Pn(oc2,oc1)-‘1‘n((x ) +

(54)

(V (o 0,) + cosh(2m-0, = (n = 1)-0) ) 9 (o0} +

V(0 ocl)-‘P*n<oc2))

1
d": H ’ (U‘”(QI’OLZ)"PAOLI) + U-n((XZ’ OLI)"Pn<OL2) +
n

V_n(ocl, oc2>-‘P*n(ocl) + V_n(oc2, ocl)-‘I’*n<oc2))
Onde ¥,,(a) e ¥, (a) sdo dados por (44 ) e (45).

Finalmente, a constante Ké obtida através da condi¢cdo mostrada na eq.( 29 ) apds a

introducdo das constantes A,, e B, paran = 1, determinados em (46 ) e (51).

3.3 M¢étodo numérico

Nesta secdo serd exposta a metodologia de utilizagdo do programa e do método de
elementos finitos, assim como 0s parametros, condi¢cbes de contorno e metodos
numeéricos utilizados. Serdo descritos os tipos de elementos a serem usados (para 0
Estado Plano de Tens&o), assim como suas caracteristicas (geometria, disposi¢cdo dos

nos) e a malha utilizada.
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3.3.1 Teste do programa: exemplo de Kirsch

Para aprendizado da ferramenta e demonstracdo de equivaléncia entre 0 método de
elementos finitos e o analitico proposto por Kirsch (chapa infinita com um furo, sob
carregamento uniaxial e pressdo interna), foi desenvolvido um problema

simplificado, cujos resultados serdo apresentados posteriormente.

Tais resultados serdo comparados com a solucdo analitica:

p;=1lou0 60=10u0 g:%:%

2 55
G(e)—g.[1_2.005[2.(9_1]])+M (55)
0 0 2 (1—¢€)

3.3.2 Casos estudados

Os 11 casos estudados — que se referem as Figuras 8 e 9 de Radi (2011) — sdo
apresentados na Tabela 2 a seguir (onde s&o mostrados os raios e a distancia entre os
centros dos furos, em mm, as pressdes internas em MPa e a posi¢do do centro dos
furos, x.; € x.,, também em mm, baseada na Figura 15). O objetivo de Radi,
utilizando a formulagdo analitica, foi a de variar a aplicacdo da pressdo interna (em
um furo ou no outro — casos 8a e 8b), a posicdo relativa horizontal entre os furos
(9aa, 9ab, 9ac, 9ad) e a relacdo de tamanhos entre eles (9ba, 9bb, 9bc, 9bc, 9bd, 9be).

Nestes casos, os furos encontram-se alinhados horizontalmente.

Tabela 2 — Primeiro grupo de simulagGes, relativo as Figuras 8 e 9 de Radi (2011)

Figura L) L d P2 P1 Xc2 Xc1
8a 18,5 15,5 44 1 979,5 1023,5
8b 18,5 15,5 44 1 979,5 1023,5
9aa 7,75 15,5 54,25 1 969 1023,25
9ab 7,75 15,5 38,75 1 976,75 1015,5
9ac 7,75 15,5 31 1 980,625 1011,625
9ad 7,75 15,5 26,35 1 982,95 1009,3
9ba 77,5 15,5 108,5 1 976,75 1085,25
9bb 31 15,5 62 1 976,75 1038,75
9bc 15,5 15,5 46,5 1 976,75 1023,25
9bd 7,75 15,5 38,75 1 976,75 1015,5
9be 3,1 15,5 34,1 1 976,75 1010,85

47



3.3.3 Geometria

Como uma geometria de chapa infinita é impossivel de ser realizada em um
programa numeérico, foi criada uma chapa quadrada com largura de 2000 mm. Tal
formato levava, no pior dos casos (furo com raio r, = 77,5 mm), a uma relagao
diametro por lateral da chapa de 7,75%. Na grande maioria das simulagdes, a relagéo

foi mantida menor que 2% (para furos com 18,5 e 15,5 mm de raio, por exemplo).

E interessante notar que, para os casos de carregamento uniaxial, biaxial e/ou com
pressdo interna, a estrutura apresenta simetria, quando os furos encontram-se
alinhados horizontalmente. Deste modo, apenas meia chapa pode ser simulada,

garantindo equivaléncia dos resultados para uma chapa inteira (Figura 15).

ARENARENARENARENRRNARaNARanNAnnnnS)

A

Fpowrouia vl e iu

Figura 15 — Exemplo de configuracao simétrica simulada em elementos finitos

Nos casos em que os furos possuem posicdo relativa variada (verticalmente,
conforme um angulo com a horizontal) ou que haja carregamento de cisalhamento
nos bordos da chapa, a estrutura ndo apresenta simetria € por isso a chapa inteira
deve ser simulada (Figura 16). Cabe ressaltar que o carregamento biaxial é
decomposto em tensdes de tragdo/compressdo e cisalhamento, de modo a manter na
horizontal o eixo que liga o centro dos furos (antes inclinada de um angulo (). A

formula utilizada para o célculo destes carregamentos provém de Radi (2011):

1 1-24
2

gy =51+i-(1—=2)cos2] a”, G§“2=%[1+},+(1—),)coszg]af“, 5 = 5 sin2{ a* (56)
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Figura 16 — Exemplo de configuracdo ndo simétrica simulada em elementos finitos

3.3.4 Malha

A regido a ser simulada foi separada em quatro regides, no caso de simetria, e cinco,
quando esta ndo ocorria: uma regido com malha refinada nas proximidades dos furos
(regido 1), e outras regides circundantes (II, 11l e 1V) com malha cada vez mais

grosseira até atingir os bordos da chapa (Figura 17).

AREREARRRNAREANARENNARRANARRANNA!

I

I | IV

Jooads Kool

Figura 17 — Malha: delimitacdo das regides com refinamento diferenciado

Nos bordos dos furos, foram criados nés com distribui¢do uniforme de 1 em 1 mm
(MeshSeed), e uma distribuicdo variavel de 1 a 2 mm até os contornos desta regido
dos furos. Foi criada uma malha ndo estruturada que possuia elementos quadrilateros

(Quad4) de, 2 mm de largura.

J& os contornos das regifes circundantes, uma distribuicdo variavel de nés foi criada,
com espacamento inicial de 2 mm (bordos da regido refinada) e final de 10 mm
(bordos da chapa). Nestas regides optou-se pela criagdo de malha estruturada com

elementos com 10 mm de largura.
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Deste modo obteve-se a malha mostrada na Figura 18, em uma configuracdo de

exemplo (teste preliminar de Kirsch com presséo interna).

}

\

|

|
[

Figura 18 — Malha completa com refinamento diferenciado

3.3.5 Propriedades

O material especificado foi adotado conforme Radi (2011). Desde modo, o material

possuia mddulo de elasticidade E = 210 GPa e coeficiente de Poisson v = 0,3.

Por se tratar de um caso de Estado Plano de Tensdes (duas dimensdes), poderiam ser
utilizados elementos de casca, membrana ou sélidos 2D, por exemplo. O ideal seria
utilizar o elemento do tipo 2D Solid, em que era possivel escolher o Estado Plano de
Tensbes, mas, por dificuldade de extrair dados, foram utilizados elementos de

membrana, que também se enquadram no caso estudado.

3.3.6 Condicdes de contorno e carregamentos

Como citado anteriormente, ha casos de simetria em que a geometria pode ser
dividida ao meio para a analise. Este procedimento requer a criacdo de condi¢es de
contorno compativeis com o fendmeno fisico atrelado. Para o caso estudado, a
simetria no plano horizontal é bem representada por um apoio simples no bordo
horizontal inferior. Ou seja, 0s elementos deste contorno podem ter deslocamentos na
direcdo x, mas ndo em y. Adicionalmente, para limitar o movimento de corpo rigido,
um dos ndés deve ser engastado para evitar translagdo em X. Tais consideracoes

podem ser vistas facilmente na Figura 15 ja apresentada.
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Os carregamentos foram aplicados utilizando da funcdo pressdo (pressure). Nesta,
uma pressdo é aplicada na dire¢do normal as faces dos elementos escolhidos. Pode
ser utilizada tanto para aplicar as tensdes nos bordos da chapa (o073 € 055), tanto para

aplicar as pressdes internas nos furos (p; € p,) (Figura 19).

Figura 19 — Aplicacéo de pressdo interna em um furo

3.3.7 Extragéo e processamento de dados

De modo a obter a tensdo circunferencial em cada nd nos bordos dos furos, é
necessario conhecer as componentes de tensdo oy, g, € T, € as coordenadas da
posicdo (x,y) do n6 em questdo. Estes dados podem ser extraidos do Patran através
da funcdo Results > Report - Overwrite File, em que um arquivo com extensdo txt
é criado. E necessario, para tanto, selecionar os nds de interesse. Em seguida, 0s

dados devem ser processados por meio de Excel, utilizando as seguintes formulas:

6 = arccos <—(x — xC))
r

(57)
0p = 0y " sen(0)? + g, - cos(0)? — 1y, - sen(26)

Estas formulas provém da rotacdo do tensor das tensdes para encontrar a tensdo em
coordenadas cilindricas (Apéndice 1) e na deducdo geométrica para encontrar o

angulo 6 a partir dos dados extraidos (Figura 20).

Y
A
Y

b

A

Xc

A
A

Figura 20 — Esquemas para a determinacao do angulo @ nos furos 1 (a direita) e 2 (a esquerda)
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4 RESULTADOS

Objetiva-se obter gréaficos da tensdo circunferencial nos bordos dos orificios em
funcdo do angulo destes através dos dois métodos apresentados (analitico e

numérico) a fim de proporcionar uma comparacdo entre ambas as metodologias.

4.1 Método analitico

A tensdo radial é obtida através da soma entre a tensdo fundamental e a auxiliar.

Desta maneira, foram utilizadas as férmulas explicitadas na Figura 21 para o seu

calculo.
(29) (13)
] (19)
K B(a, @)
(47) o, ]
f(ai) | (40) ’
g(a;) i ]
D 5 0 (0, 8)
(21)
$1(a) || (22)
¢11( !
2 %(1) Grafico
Ya(a) [
Yn(a)

Figura 21 — Fluxograma do calculo das tensdes radiais

A partir das férmulas correspondentes para cada termo da férmula final, nota-se uma
complexidade para o calculo de K, . Tais célculos serdo tratados com mais cuidado
nos topicos seguintes. Além destes, h4 termos que podem facilmente calculados a

partir de uma ou duas formulas apenas, conforme deduzido por Radi (2011).

Ja os termos ¢4, ¢n, Y1 € P, possuem complexidade na implementacdo, devido a
grande quantidade de formulas e fungdes atreladas. Estes parametros dependentes da
coordenada curvilinea a podem ser determinados com o auxilio das férmulas

mostradas nos fluxogramas das Figuras 22 e 23.
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(21)
¢4 ()

(21)
$n ()

(47) (46)
f(ai) Al
(50) g(D(Zl) lgi
Pn(ai!aj)
Qn(ai:aj) (51)
Un(ai!aj)
V,(a;, a; Ay,
Py (ay) Cn
Dy
(29) (39)
K | |on@)
t
(26)
gm(ai)

Figura 22 — Fluxograma do célculo de ¢4 € ¢,

(44)

me (ai)

(26)

gm(ai)

(41)

(49)

(21)

P ()

B (a;, a;)
Qn(a;, ;)
Un
Va(a;, a;)

(55)

(a;, ;)

Hy,

Y1(a)

(21)

Yn(a)

Figura 23 — Fluxograma do célculo de y, e ¢,

Analogamente, o calculo da tensdo cisalhante 7z, € mostrado no fluxograma da

Figura 24. Nota-se que varios termos podem ser aproveitados em compara¢do com o

calculo da tensao radial.
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(47)

f ()
g(a;)

(29)

(46)

B

(19)
©)

(21)

1 ()
$n(a)

= e B)

(21)

(@)
Pn(@)

(22)
€]

(13)
p (e, 0)

Grafico
TRa ()

Figura 24 — Fluxograma do célculo das tensdes cisalhantes

E, da mesma maneira, a formula para o calculo da tensdo circunferencial o pode ser

vista no fluxograma da Figura 25.

(47)

f(a;)
g(a;)

(29)
K

(46)
B

(19)

0
A0

(21)

$1(a)
Pn(a)

(21)

(@)
Pn(@)

(22)

1
o,V

(13)
(e, 6)

— (@)

Grafico
o3 (0)

Figura 25 — Fluxograma do calculo das tensdes circunferenciais

Cabe ressaltar que a implementacdo para o calculo destas tensdes esta apresentada no

Anexo 3.
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4.1.1 Determinacdo de K

O coeficiente K varia conforme a configuracdo escolhida e valores de parametros
geomeétricos. Conforme o fluxograma da Figura 26 pode-se ver quais formulas foram

utilizadas para a obtencéo deste coeficiente.

(47) (46)
| D A, (K)
9(K) B, (K)
f(K)
(11) 2] (29)
o || o [ B0 + B =0 [ K
ay H,
(43) (51)
(26) (39) By (K)
dn B @5

Figura 26 — Fluxograma do calculo do parametro K

Como se pode ver no Anexo 1, um programa foi criado na plataforma Maple para a
determinacdo do coeficiente. Cabe ressaltar que a somatoria da eq.( 29 ) teve seu
limite superior mudado de infinito para 100, de modo a ser possivel o calculo do
somatorio no programa. Foi observado empiricamente que, utilizando um valor para
n de aproximadamente 10 ja era suficiente para a convergéncia e a estagnacdo do

somatorio, conforme observado na Figura 27 a seguir.

2,18

2,18 - . 4

2,17
=
2,17

2,16

2,16 T T T T T 1
0 20 40 60 80 100 120

Figura 27 — Gréfico da variacdo de K com a mudanga do limite superior do somatdrio, para

uma configuragdo de exemplo
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Deste modo, considerando pardmetros variados de 1y, 15, d, 075, 052, T12, P1 € P2,

podem ser calculados valores de K quando o limite do somatorio € limitado a cem.

4.1.2 Determinacgao de

Para o célculo das tensdes circunferencial e radial, é imperativa a determinacdo da
coordenada curvilinea g em funcdo do angulo 6. Deste modo, para o furo 1,
utilizando as relacdes obtidas na eq.( 13 ), pode-se facilmente isolar a variavel g e
encontrar uma formula para esta coordenada (Anexo 2):

cos(8) cosh(a) + 1 (58)
cos(8) + cosh()

B = arccos

Além disso, através de um grafico ilustrativo (Figura 28), observa-se que o valor de
B deve ser negativo para valores de 6 menores que 0 (zero) de modo a considerar o

lado inferior do furo.

1304

100 4

7,(8) [graus]

T T
30 100 150

Figura 28 — Gréfico da variacdo de g em funcdo de 0

Foi notado que esta coordenada assemelha-se a um arco capaz, isto é, o local
geométrico em que todos os pontos do circulo passante pelos pontos a e —a possuem
mesmo angulo com relacdo a estes pontos. Assim, o orificio pode ser descrito pela
variagdo de £, ponto a ponto, como uma familia de circulos com raios variados,

conforme Figura 29.
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Figura 29 — Visdo geométrica da coordenada

Assim, deduziu-se uma férmula para um B geomeétrico, isto €, para 0 caso de S

representar um arco capaz com base nos pontos a e - a, como visto nas Figuras 30 e
31 a seguir e nas formulas de ( 59 ), para o primeiro furo.

SN )

Figura 30 — Coordenada B como arco capaz e outros angulos relevantes

3
X2
e B
)
=
R
=
3 @
7 =
— >
x
a a X4 —a|l 7 - cos(8) 1
e o P = oy P
r\ o 41\\ P
x
< at o~
T ~ |

Figura 31 — Coordenada 8 como arco capaz, angulos e medidas relevantes

57



0
a-coth(ocl) -a+ rj-cos[ I_ST(E)]

180
= @— —— arctan
Y T ‘ in( 0w )
" g0

. 59
a+a'coth(a1> +rl-cos[?—87(;] (59)

€ = 6—>1—80-arctan
! T ‘sin[—e'TE ]

g 180
Boeom = 8—€,(8)-7,(6)

Para a obtenc&o desta formula, foi utilizada a distancia do centro do furo & origem. E

possivel deduzir que:
xcj = a'COth(O(]) (60)

Foi observado que o resultado encontrado através da deducdo por arco capaz € bem

representativo para a coordenada em questédo (Figura 32).

Figura 32 — Gréfico da variacéo de B (deducéo por arco capaz) em funcéo de 0

E, fazendo-se a subtracdo entre ambas as formulas deduzidas, nota-se uma diferenca
irrelevante entre elas, na ordem de 108 conforme mostrado na Figura 33. Neste
trabalho, foi utilizada a férmula baseada na deducdo de Radi (2011). A versdo

geométrica foi utilizada apenas para melhor entendimento da coordenada curvilinea.
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Figura 33 — Gréfico da comparacao entre 8 baseado na dedugdo de Radi (2011) e B deduzido

COMo arco capaz

4.1.3 Tensao radial o,(0)

Os resultados obtidos para ambos os furos, no que concerne a tensdo radial, sdo 0s

mostrados na Figura 34.

'
2
L

'
Iul;q q

Figura 34 — Gréfico de o,(0) para o primeiro furo (esquerda) e segundo furo (direita)

Porém, nota-se que os resultados sdo incompativeis com a condi¢do de contorno

dada, em gue ndo ha carregamentos radiais nos bordos dos furos.
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4.1.4 Tensdo circunferencial a4(8)

A tensdo circunferencial também foi calculada e plotada na Figura 35, porém, seus

resultados ndo sdo confidveis, conforme ja explicado no tdpico anterior.

Figura 35 — Grafico de a4(8) para o primeiro furo (esquerda) e segundo furo (direita)
4.1.5 Tensdo de cisalhamento 7g,(0)
Analogamente, os resultados obtidos para a tensdo de cisalhamento (conforme a

Figura 36) devem ser futuramente revisados, ja que o valor esperado para a tensdo de

cisalhnamento nos bordos dos orificios seria 7, = 0.

CIER
"
2
3

g, [ rad]

Figura 36 — Grafico de t4,(8) para o primeiro furo (esquerda) e segundo furo (direita)
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4.1.6 Conferéncia de férmulas da bibliografia

Devido & obtengdo de resultados parciais que ndo condiziam com o esperado (como
tensdes radiais nos bordos dos furos em condigcdo de furos sem pressdo interna),
durante a elaboracdo deste trabalho, tornou-se imperativo conferir se havia erros de

deducdo ou digitacdo nas formulas propostas por Radi (2011).

N&o foi possivel deduzir na totalidade as formulas propostas por Radi (2011), no
tempo deste trabalho de conclusdo de curso. As que foram deduzidas serdo citadas

adiante.

4.1.7 Foérmuladaeq.(22)

Como mostrado anteriormente, as formulas para as tensdes derivam da eq.( 15 ), em

(1)

primeira instancia. Através de comparagdo com a formula de g, notou-se que

faltava um paréntesis na formula de a proposta por Radi (2011). Deste modo, a

férmula proposta foi modificada conforme mostrado em vermelho na eq.( 61 ).

o1 = L K (cosh(201) — 2cosh(c0) cos(B) + cos(2B)) —

_Bsinh((x)(cosh(oc) —cos(B)) +
21[ o, (cosh( ) cos(nB) —n2 cosh(o) — cos(B)) -

cos(nB) + nsin(p) sin( )+ @y n cos(B) sin(np) — (n?—1) -

cosh(a) sin(nB) — nsin(B) cos(nP))

(61)

-¢ sinh(a) cos(nB) — v sinh(at) sin(n B ))

Este resultado, entdo, foi deduzido novamente conforme a programacédo do Anexo 4,
com base na deducdo das tensdes por Jeffery (1921). Devido a extensao das formulas
e dificuldade algébrica de simplificagdo destas, optou-se por comparacdo direta dos
resultados deduzidos com os propostos por Radi (2011). Tal comparagdo pode ser
vista no Anexo 5. Em suma, concluiu-se que ambas as formulas (de Radi e a
novamente deduzida) sdo praticamente idénticas, ja que, para um caso especifico, as

tensdes obtidas diferem na ordem de 1071, conforme mostrado na Figura 37.
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Compara(theta)
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Figura 37 — Grafico da comparacéo entre o « deduzido’

eo para o furo 1

E necessario notar que seria mais preciso simplificar as formulas e compara-las
subtraindo uma da outra. Além desta analise, foi observado que esta férmula é
conflitante a eq.( 27 ) pela presenca do fator 1/2 assinalado na férmula. Sua

discussao sera vista mais adiante.

4.1.8 FOrmulasdaseqs.(24),(25)e(26)

Com estratégia analoga, foram comparados os resultados obtidos atraves das tensdes
provenientes da funcdo de tensdo fundamental da eq.( 19 ), considerada correta pela
bibliografia, e os obtidos apds a expansdo em séries de Fourier da eq.( 24 ). Assim,
para um carregamento especifico, a diferenca ficou na ordem de 1071° (Figura 38),

mostrando equivaléncia entre ambas as formulas e correta deducéo.
Comparacio(theta)

5107t

/N

Difefenca entre

tensges Cihx1p-10]

-2.x 107194

-235x 1071

Q)

a_tensio_fun

Figura 38 — Gréafico da comparacao entre o 480 para o furo 1

a_Fourier’

62



Novamente, 0 mais indicado seria a deducdo completa a partir do auxilio da integral

definida de Ling (1948) ao executado no Anexo 6.

4.1.9 Formulas daeq.(27)

Com base na dedugdo do Anexo 7, notou-se uma incompatibilidade entre a formula
daeq.(22)eadaeq.(27). Aeq.(27) difere da eq.( 22 ) por um fator "ERRO"

descrito no Anexo, no item (iii):

ERRO = % v [sin(n B) cosh(o) n? — n? cos(B) sin(nB)
+ nsin(B) cos(nB) — sin(nB) cosh(a))

(62)

Acredita-se que o erro esteja na eq.( 22 ), em que um fator 1/2 foi escrito a mais
multiplicando o termo com v,,. Suspeita-se, primeiramente, pela falta de paralelismo
com a fungdo de . Além disso, as dedugdes das formulas seguintes foram baseadas
na eq.( 27 ) que, tomada como correta, foi aplicada na eq.( 29 ) levando a toda a
deducdo para as condi¢cbes de contorno. Ou seja, caso faltasse ser multiplicado o
fator 1/2 na eq.( 27 ), este teria sido notado nas férmulas conseguintes, o que nao foi

0 Caso.

A segunda formula da eq.( 27 ) ndo foi deduzida como a primeira, porém, notou-se a
presenca de um n multiplicando o termo T,,. Novamente, trabalhando com a légica e
paralelismo entre formulas, notou-se que, na primeira férmula, os termos S, e s,
eram multiplicados por n devido a presenca multiplicativa de 1/2n fora do
somatorio. Ja a segunda apresenta a multiplicagdo do somatério por 1/2,
dispensando a multiplicacdo por n deste termo. Além disso, o termo t, ndo é

multiplicado por este fator, reforcando o argumento.

Deste modo, a segunda formula da eq.( 27 ) foi tomada como correta apos retirar o

termo assinalado na férmula a seguir.

T K-sinh(a) + B-cosh(a) ) -sin(B) + %-sin(Z-B) +

4L
80 0T 2 Viimhar T (

1 .
> Z ((_(DEH*I +2-cosh(a) @, — @,  + 2®Tn) -sin(n-p) + (‘{’Enij —2-cosh(a)

n=

e, Y, +2'tn)~cos(n'[3)) :

(63)

—_
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As proximas dedugdes foram feitas com esta formula corrigida, ndo apresentando

problemas em dedugéo. Ou seja, ha coeréncia nesta corregéo.

4.1.10 Imposicao das condic¢Ges de contorno

A imposicgdo das condigdes de contorno, como ja dito anteriormente, baseia-se em
equacOes provenientes de Jeffery (1921) e dos valores das tensdes em regides
especificas (bordos dos furos). Esta imposicdo € necessaria para o célculo e
determinacdo das constantes desconhecidas e, por isso, foram deduzidas novamente

para conferéncia.

A primeira férmula da eq.( 31 ) apresentada por Radi (2011) p6de ser deduzida
facilmente, assim como a segunda formula da eq.( 31 ), no Anexo 8. Porém, esta foi
digitada incorretamente por ele, utilizando a letra grega mailscula ao invés da
minuscula, que poderia levar a uma interpretagdo errada durante a deducgdo. Assim, a

seguinte férmula deve ser modificada:
Wi(@) = 2753 7?1 > (@) = 2 753 - e 7217 (64)

Neste mesmo Anexo foram deduzidas as formulas da egs.( 32 ) a ( 35 ) com certo
trabalho algébrico. Por exemplo, foi necessério utilizar fungdes como o delta de
Kronecker, inimeras transformacdes de funcBes hiperbdlicas em exponenciais (e
vice-versa), abertura em dois casos (quando da existéncia de funcdes com maodulos),
operagOes com somatdrios (abertura de somatdrios, mudancas de variaveis, mudanca

de intervalos e outras propriedades) e outras manipulacdes algébricas.

Ja a eq.( 36 ) foi mostrada numericamente (além de encontrar que as formulas sdo
equivalentes, apos certas simplificacdes): fez-se tanto a subtracdo entre a formula
deduzida e a proposta por Radi (almejando resultado nulo) e a divisdo entre ambas as

formulas (almejando resultado unitario).

Como visto no Anexo 9, tanto para valores positivos quanto para valores negativos
de a, a subtracdo das formulas resultou zero no intervalo procurado (para valores de

a até +2m), considerando valores de m arbitrados (Figura 39).
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-6, %1097
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Figura 39 — Gréafico da subtracgdo entre a formula deduzida e a da eq.( 36 ) em funcéo de a > 0,

comm =17

Do mesmo modo, o grafico da Figura 40 demonstra que a razdo entre as formulas é

igual a 1, provando que ambas séo equivalentes.

0.5+

o

Figura 40 — Gréfico da razéo entre a formula deduzida e a da eq.( 36 ) em funcéo de & > 0, com
m=17

Ja as formulas das egs.( 37 ), ( 38 ) e ( 39 ) puderam ser deduzidas literalmente no

Anexo 10, utilizando varias manipulacdes algébricas ja citadas. Cabe ressaltar que ha

um erro de digitacdo na eq.( 38 ): a auséncia do sinal de negativo entre B e (g55 —

or7) leva a entender erroneamente que se trata de uma multiplicacdo (em que

normalmente o sinal é omitido). Assim, é necessario mudar a seguinte férmula:

@i (a) = 2Ke ' sinh a 4+ B(o55 — 03)e 2% sign a - (65)

- @i (a) = 2Ke !“'sinha + B — (055 — 053)e ?1%sign a
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Com relacdo a deducdo das formulas das egs.( 40 ) a ( 44 ), no Anexo 11, notou-se
que ora Radi (2011) considera o médulo dentro da somatoria, ora fora, através do uso
da funcéo sign(a), evitando, assim, uma inconsisténcia entre as formulas. Porém, a
deducdo das duas primeiras formulas ndo pdde ser terminada neste Trabalho de
Conclusdo de Curso. Para a deducdo das seguintes e para a determinagdo das
constantes desconhecidas (proximo topico), foi considerado que estas férmulas
estavam corretas. E importante ressaltar que as outras trés formulas deste anexo
puderam ser facilmente deduzidas (ou ter suas equivaléncias demonstradas) e é

interessante, para trabalhos futuros, que se terminem as deducdes faltantes.

4.1.11 Determinacao das constantes desconhecidas

Em sequéncia as deducdes, as constantes podem ser determinadas utilizando certas
formulas aplicadas as condigdes de contorno: basicamente nos bordos dos furos
(d =a, e a=a,). Deste modo, varios sistemas lineares foram obtidos para
determinar os valores de A;, B;, C; € B (Anexo 12); a, e c; (Anexo 12); A,, B,, C, €
D,, (Anexo 13), a, b, ¢, € d,, (Anexo 13).

As formulas base para os sistemas lineares — egs.(45 ), (48 ), (50 ) e (53) —
puderam ser obtidas facilmente (apresentadas nos respectivos Anexos) e ndo
apresentaram erros, com exce¢do da segunda féormula da eq.( 53 ), em que Radi
(2011), apos derivar os senos e cossenos hiperbdlicos, pela regra da cadeia, errou ao
digitar o resultado: no lugar de sinh(x) deveria constar cosh(x) e vice-versa. Assim,

a seguinte formula deve ser corrigida:

‘P*n(oc) =n-(n+ 1)-(an-cosh((n +1)-a) + cn~sinh((n + 1)~0L)) +
n-(n— 1)-(bn-cosh((n —1)-a) +d -sinh((n — 1)-a))—> (66)

*

—¥ (o) =n(n+ 1)+ (a,sinh((n + 1)-a) + ¢, cosh((n+1)-a)) +
n-(n— 1)-(bn-sinh((n —1)-a) +d -cosh((n — 1)-0())

Através da deducdo dos coeficientes da eqg.( 49 ) no Anexo 12, observou-se a falta de

um sinal de negativo no valor do coeficiente c;.

A conferéncia dos coeficientes encontrados foi feita com o seguinte procedimento:
e Aplicacdo das condicGes de contorno nas formulas base

e Obtencdo do sistema linear
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e Solucdo do sistema linear pelo método de Cramer
e Subtracdo entre o coeficiente obtido e o proposto por Radi (2011)

e Plotagem com parametrizacdo de todos os fatores inclusos na formula

Deste modo, foi possivel comparar as formulas para situacfes totalmente genéricas e
mostrou-se que elas sdo consistentes, ja que nos intervalos de a4, a, € [-2m ...2m] a
subtracdo manteve-se resultando zero, como pode ser visto no exemplo do

coeficiente A, nas Figuras 41 e 42.

Plot Window Parameters

10 10 10
=
(3
5 5 5
[
0 0 0
7.75 175 3.5
2 [ f_2
Flot Command E=
0000000%=inh (2%x) —cosh (x+y) * (3.50000
0000%sinh (y) ~2-17.00000000%sinh (x) 2 =
+{g__1-7.750000000) *tanh(x+y)), & =  ~

Figura 41 — Gréfico interativo da subtragdo entre o coeficiente A, deduzido e o proposto por
Radi (2011), com variacdo manual dos parametros g,, f1 € f»

g;=16667 g;=37500

g;=10000

Figura 42 — Graficos da subtragéo entre o coeficiente A; deduzido e o proposto por Radi (2011),
com variagdo do parametro g,
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4.2 Método numérico

Como dito anteriormente, 0 método dos Elementos Finitos foi confrontado com os
resultados analiticos para o caso de um furo em chapa infinita no caso bésico de

Kirsch, em que h4 uma solucéo analitica.

Ja para o contexto deste trabalho, em uma primeira abordagem, foram feitas as
simulacOes referentes as Figuras 8 e 9 de Radi (2011), totalizando 11 configurac6es

diferentes, em que se variavam:

e Localizacdo da pressdo interna (referente as Figuras 8a e 8b)
e Posicdo relativa horizontal entre os furos (referente a Figura 9a)

e Tamanho relativo entre os furos (referente a Figura 9b)

Os resultados serdo comparados aos resultados analiticos de Radi (2011), a seguir.
Em seguida, sera feita uma analise variando-se a posicao relativa vertical entre os

furos.

4.2.1 Verificacdo do método (problema de Kirsch)

A solucdo analitica sem tensdo no infinito (somente pressdo interna) leva a uma
distribuicdo uniforme da tensdo circunferencial (constante e igual a pressdo interna
considerada — neste caso 1 MPa), como pode ser visto no grafico da Figura 43, a

esquerda, proveniente da programacédo do Anexo 14.

Ja a solugdo com carregamentos uniaxial e pressdo interna no furo, ha a superposicao
de ambos os efeitos. Isto &, a tensdo constante unitaria € somada a tenséo concentrada
por causa da presenca do furo (de valor 3 MPa) nos bordos transversais ao
carregamento (resultando em 4 MPa). Ja nos bordos longitudinais, a tenséo de tracéo
ocasionada pela pressao interna é cancelada com a tensdo de compressao proveniente

do carregamento uniaxial, conforme pode ser visto na Figura 44, a esquerda.
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Figura 43 — Tenséo circunferencial nos bordos de um furo submetido a presséo interna,

exclusivamente, em funcio de 0: resultados analitico (a esquerda) e numérico (a direita)

iz T -180  -120 60 0 60 120 180

e
S

Figura 44 — Tens&o circunferencial nos bordos de um furo submetido a presséo interna e

carregamento uniaxial, em func¢io de 0: resultados analitico (2 esquerda) e numérico (a direita)

Comparando com o resultado das simulacBes numéricas por elementos finitos
(gréficos a direita nas Figuras 43 e 44), nota-se que os resultados s@o coerentes e,

deste modo, o modelo é verificado.

4.2.2 Variacdo da localizacdo da pressao interna

No primeiro caso (8a), simularam-se dois furos alinhados, sendo apenas o da direita
com pressao interna (o de indice 1, com raio menor). Pode-se notar na Figura 45, no
grafico da direita, que os resultados obtidos pelo método dos elementos finitos sdo
compativeis com o esperado, ao se comparar com a resposta analitica de Radi (2011)

— grafico da esquerda.
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8 (graus)

Figura 45 — Tens&o circunferencial nos bordos dos furos no caso de presséo interna no furo 1,
exclusivamente: a esquerda, resultados analiticos de Radi (2011) — Fig. 8.a adaptada; a direita,

resultado obtido numericamente por elementos finitos

No segundo caso (8b), a simulag&o é similar: dois furos alinhados, mas com presséo
interna no furo de indice 2. Nota-se na Figura 46, que os resultados (numéricos e

analiticos) sdo equivalentes.

Td

(MPa)

b lU]:O -= O=04
pa=p — O =0

a A

§
I|I_I_LL_|JIIII
-

-~ I
= ]
o, !
& [ ) !
B \ 7 -180 y -120 50 G0N 120 p 180
C v /7 \ , 0.5 N I
Y / v, !
S SR ‘s X N
: -1.5
Al l L [ S| 1 3 8 (eraus)
-180  -120  -60 0 60 120 180
0

Figura 46 — Tens&o circunferencial nos bordos dos furos no caso de presséo interna no furo 2,
exclusivamente: a esquerda, resultados analiticos de Radi (2011) - Fig. 8.b adaptada; a direita,

resultado obtido numericamente por elementos finitos
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4.2.3 Variagdo da posicao relativa horizontal entre os furos

Como feito por Radi (2011), variou-se a posi¢éo relativa entre os furos. Inicialmente,
apenas na coordenada x; (horizontalmente), para o caso de apenas um furo

pressurizado.

Os resultados obtidos foram confrontados com os analiticos de Radi (2011) e podem

ser vistos na Figura 47. Vé-se que os resultados sao compativeis com o esperado.

5 ] 5.
a rlry=0.5 Pi=p,

=01
1223 O,

I

L1 LR RN RARRR RN
¢ R

Il

2

- ©
—~ o
%' -2 N =
. » Py
—Z == oL = 0lp - I
O_ --\"t-.__ "_.-’: ‘\ =]
u N ST T [
\E—&m =20~
-1F N I
C 210 A I
e :05 ~ Y
21 . /
£~ =02 ~_ -~
3LC P Y S T T NN A N l L 3l e(graus)

Figura 47 — Tens&o circunferencial nos bordos dos furos no caso de presséo interna no furo 1,
exclusivamente, em funcéo da disténcia horizontal relativa entre os furos: a esquerda,
resultados analiticos de Radi (2011) — Fig. 9.a adaptada; a direita, resultado obtido
numericamente por elementos finitos

4.2.4 Variacao do tamanho relativo entre os furos

Para a variacdo do tamanho dos furos, mantendo-se uma distancia constante entre 0s
furos, os resultados também foram consistentes com os obtidos analiticamente, como

pode ser visto na Figura 48.

E interessante notar que ha uma diferenca pequena entre os resultados da tensdo
circunferencial da bibliografia e os encontrados por elementos finitos na linha
tracejada vermelha da Figura 48. Essa diferenca pode ter sido causada por imprecisao
da malha utilizada e, por isso, seria interessante repetir a simulacdo mantendo as

proporcdes entre os raios dos furos e outras geometrias.
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Figura 48 — Tenséo circunferencial nos bordos dos furos no caso de pressdo interna no furo 1,
exclusivamente, em funcéo do tamanho relativo entre os furos: a esquerda, resultados analiticos
de Radi (2011) - Fig. 9.b adaptada; a direita, resultado obtido numericamente por elementos

finitos
4.2.5 Variacao da posicao relativa vertical entre os furos

Foram testadas algumas configuracGes de furos deslocados (com angulo entre seus

centros), conforme a Figura 49.

Ao Aoy”

Figura 49 — Chapa infinita com dois furos circulares diferentes sob carregamento biaxial. O
angulo ¢ define a orientacao relativa das dire¢des principais do campo de tensGes remotas com

respeito a coordenada x; (Radi E. , 2011)
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Os trés casos estudados — que se referem as Figuras 11, 12 e 13 de Radi (2011) — sdo

apresentados na Tabela 3 a seguir (onde as distancias estdo em mm, e as tensées em

MPa). Em todos os casos foi mantido o tamanho e localizacdo do furo de indice 1 e

variados os parametros do segundo furo. Os carregamentos foram calculados com

base na eq.( 56 ). Assim:

e 1, =20mm

e x4 =1020mm

Ye1 = Y2 = 1000 mm

Tabela 3 — Segundo grupo de simulagdes, relativo as Figuras 11,12 e 13 de Radi (2011)

Figura T, X¢2 ¢ oy’ A GZOOZ a°°] 1 r°°] 2
11c 4 976 30° 1 0 0,75 025 0,433
12b 10 986 30° 1 0 0,75 025 0,433
13¢ | 10 980 60° 1 -1 0,50 0,25 0,866 |

Os resultados obtidos pela analise numérica, por elementos finitos, estdo ilustrados

na Figura 50 a sequir, para estas configuragdes.

ag(B, ) [MPal &

A =

g [graus]

(6, @) [MPa] & 7

6 -
ag(8, @) [MPa]
5 -

a -

g [graus]

T 1
0§y 180

g [graus]

Figura 50 — Tensao circunferencial para as configuragdes 11c (acima a esquerda), 12b (acima a
direita) e 13c (abaixo)
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A comparagéo dos resultados da simulagdo por elementos finitos com os obtidos
analiticamente por Radi (2011) — em suas Figuras 11, 12 e 13 — pode ser vista na
Tabela 4 a seguir. Esta tabela mostra a tensdo maxima de cada caso (como ja visto na
Figura 50), em MPa, para os furos 1 e 2 e a posicdo onde ela ocorre, em graus. Radi
(2011) indica diretamente o fator de concentracdo de tenséo (Stress Concentration
Factor — SCF) e a posicdo onde este ocorre. Neste caso, ambas as grandezas séo
equivalentes, devido a magnitude unitaria dos carregamentos nos bordos das chapas,

e sua razdo pode ser calculada para comparacao.

Tabela 4 — Comparagéo dos resultados numéricos por elementos finitos com os analiticos de

Radi (2011) para localizagio e magnitude da maior tenséo ocorrida em cada caso

Figura Og num engn SCFRadi eRa i Og n%/SCFRadi en%/ekadi .

11c_1 3,1 151 3,1 156 100% 97%
11c_2 3,8 -151 3,9 -168 96% 90%
12b_1 5,2 169 5,5 168 94% 100%
12b_2 5,9 -166 5,9 -172 100% 96%
13c_1 4,2 -63 4,2 -60 101% 105%
13c_2 4,9 63 4,9 90 99% 70%

Como observado na Tabela 4, os resultados s&o compativeis, ja que os erros ficam,
na maioria dos casos, em torno de 5%. A maior discrepancia encontrada foi para o

caso referente a Figura 13 de Radi (2011) para o segundo furo: 30%.
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Cabe ressaltar que os dados analiticos foram retirados de Radi (2011), conforme a

Figura 51.
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Figura 51 — Variacéo dos Fatores de Concentracdo de Tenséo (SCF) e a correspondente posi¢édo
angular onde ocorre a tensao circunferencial maxima, com relag¢do ao angulo ¢ para as
condicdes de: 11c (graficos superiores), 12b (graficos ao meio) e 13c (gréficos inferiores).
Adaptado de (Radi E. , 2011)
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5 CONCLUSAO

Apo6s a conclusdo deste trabalho, notou-se que ainda é necessaria conferéncia mais
aprofundada nas férmulas de Radi (2011) de modo a encontrar outros possiveis erros
de digitacdo, pois, mesmo ap6s modificar varias de suas férmulas, continuou-se a
encontrar resultados incompativeis com a realidade: foram encontradas tensdes

radiais nos bordos dos furos, mesmo na auséncia de pressao interna.

Por outro lado, considerando os resultados analiticos retirados de Radi (2011),
concluiu-se que estes sdo condizentes com os encontrados por elementos finitos, que
se mostrou bem robusto e com resultados confiaveis para a configuracdo de chapa
com orificios circulares. Deste modo, entende-se que tanto 0 método analitico com o
uso de coordenadas bipolares quanto o método numérico podem ser aplicados de

maneira equivalente.

Apesar de 0 método analitico aparentar ser mais rapido e direto, por se tratar de uma
formula para configuracBes genéricas, teve-se grande dificuldade em sua
implementacdo (devido aos erros encontrados) e considerou-se que o método
numeérico para estas configuracdes simples pode ser mais indicado pela rapidez de
resultados e facilidade de modelagem.

Para trabalhos futuros, além de uma nova conferéncia das formulas de Radi (2011),
na parte analitica, é interessante verificar a secdo com variacdo da posi¢cdo vertical
entre os furos. E na parte numérica, podem-se fazer estudos de malha e utilizagdo do
elemento de estado plano de tensdo, substituindo o de membrana aqui utilizado

(devido a maior facilidade de extracao de dados).
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7 ANEXOS

7.1 Anexo 1 - Programacao para a determinacéo de K
[ numeracéo de formulas conforme Radi (2011) ]

(K é incognita ainda)

Usando as funcdes

(61) ok

P o= (nEm)— (sinh(& + n-n) sinh(n- (& —n’)1)++1n-sinh(n + n-&)-sinh(§ —n)) :

0, = (n,&n)—cosh(& + n-m)-sinh(n-(§ —m)) —n-cosh(n + n-€) -sinh(& —n) :

U = (ntn)— (cosh(& + n-n) -sinh(n-(§ —n’)1)+Jrln'cosh(n +n-§) sinh(§ —m))

v, = (n&mn)—sinh(& + nn)-sinh(n-(§ —n)) — n-sinh(n + n-§) -sinh(§ —n) :

H = n—>2-n‘(sinh2(n'(oc] — ocZ)) — nz-sinhz(ai — O‘z)) :

(52) ok

@, = (m o) —>-e "1 (2K (cosh(a) + mesinh(fed)) + (07, = 0 Jom: (w? = 1)
ssinh([of) ) -

(30) (ok)

g, = (o)~ 1. (cosh(a) — n-sinh([of)) :

(48) ok

[o2]

= (mo)— 2-K~e_m'|al-sinh(a) — (G
Podemos calcular a
(60) ok

1
4 IR (Py(m o 0n)- @, (m ) + P, (m 0, 0))-0 (m, 1) + O, (m 01 00)

-cp*m(n, ) +0,(na,a)-@ (n ocz)) :

5, O ”) -m-gn(m, o) -sign(a) :

Bn = H tn) (Pn( n 0 O£2> .(Dm(n’ al) + Pﬂ( o 0y OC]) .d)m(n’ 062) + Q”( O

n

0,) @ (ma)+0,(-ma,0)-@ (na)):

1
Cp=n—- H (n) (Un("’ 05 0,) D, (m ) U (s 0 00)) -, (s 0y) + (W (s 01y 00)

+ cosh(2-n~o¢2 —(n— 1)-051))'@*”1(11, oc]) + V”<n, o, a[)-db*m(n, az)) :

1
D, =n= H (n) (Un(_"’ 0 0,) D, (1)) + U (=m0 0) @, (my00) + 7, (=, 01,

o) -d)*m(n, o)+ V,(~m 0, ) -d)*m(n, ocz)) :

E, com o auxilio das funcdes de
(56) ok
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oo

f= o(—>2~K~e_|a|'sinh(OC) — (G Py Gw”) 'e_2A|a|'Sign(0() :

g= 0c—>§-cosh(2-0c) —e (6%, cosh(a) + 0, sinh(Jof) ) — p(ar)

D, = 2-sinh((x1 — a2)~<sinh2(oc1) + sinhz(az)) :

Calculamos

(55) ok

%(cosh((x + o ) ( ( 1) sinhz(%) —Zf(a_?)-sinhz(a]) + (g(oc]) —g(az))
-tanh(aj + 0(2))) :

1

B, = ) (cosh o, — a7) smh2 ) —2-f(a])-sinh2((x2) - (g(oc]) +g(a2))

(2
-tanh( ) <(x2) sin ( ) (oc]>-sinh(2-a2))):
C, = l;() (cosh(a +OC) (g( ) ( )—l—(f(ocl) —f((xz))‘tanh(oc]-}-ocz) +f(a2)

-sinh(2-oc1) —f(al)'smh(locz))) :
2-cosh(al - az)-(<f(a1) +f<oc2)) tanh(a -« ) —i—g( ) g(al)) |

B =
D()
Que, na condicao de (35), obteremos K:
100
Eq, = A, + B, +Z n) + B (n )):solve(Eqk)

1.400045827

atribuir a um nome

Para outra configuracao, fez-se o seguinte teste, variando o limite superior do
somatorio:

3 resolver para K
A, +B, + Zz(An(n) +B,(n): > [[K=2156230751]]
n=
4

resolver para K

A+ B, + ZZ(An(n) +B,(n)): T [[K=2.171452795]]

n

5
solugdes para K

A, +B, + Z n) +B(n)): T 2173991347
10 resolver para K

A+ B, + Z n) +B,(n): —— > [[K=2.174552953]]
2

resolver para K
A, +B,+ zz(An(n) +B,(n)): —— > [[K=2.174553156]]
n=

100 resolver para K

A, + B, + Z A, (n) +B,(n)) — > [[K=2.174553156]]

Ou seja, nao precisa calcular até o infinito. O valor de K se estabilizou com limite
superior de 100.
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7.2 Anexo 2 — Programacao para o calculo de g(0) para o furo 1

r, = 15.5
r, = 18.5
d = 44
N 2 2\ 202).
a= - Sqrt((dz "y ’2) 47y VZ)'
rl2 — r22 + d2
o, = arccosh Tr]
cosh(a)-cos(B) — 1 ~ cos(6)
cosh(a) — cos(PB)
cosh(a) cos(B) — 1 — cos(0)
cosh(a) — cos(P)
isolar para beta
B — arccos cos(0) cosh(a) + 1
cos(8) + cosh(a)
cos(8) cosh( 051) +1
Bd[retoicos = 08— arccos COS(e) + COSh(OC ) .
1 1
‘Bdiremi(,‘()s (e) O <mand6>0
ﬁ] = 9—)

- () 6>mor6<0

direlo_cos]

plot(ﬁ[(e), 0=- n..n)

8,(8)

CE]
@ ola
4

O mesmo, mas em graus:

T
cos(—] cosh(ocj) +1
B = 06— —— - arccos 180
ang P 01 N o
cos| Jeo cos ( 1)
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Bng (6) 6<180and6 >0
“1

= 0—

Bonouior :
angulol _ B(mg (9) 0>1800r0<0
1

plot(ﬁ

angulol

(6),6=-180..180)

150 1

50 4

50 100

150

]
Comparando com a dedugdo geomeétrica de arco capaz:
4 _ +r,-cos Sn
180 2 4T 130
Y, = 60— —— - arctan
L R
I‘I'Sln(mj
+ 4 +r,-cos Sn
180 aT T 180
€ =0———-arctan
I T AR
r[-sm W
Bgeum(e) - 61(9) —)/1(9)
plot(ﬁgmm(e), 0=-180 ..180)
150
Dol 8) [raus] ]
50
50 w150
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Compara = 6—>ﬂa”gulol(6) —B _ (8):

geom

plot( Compara(©),0=-180..179)

150
ﬁded{ e) - ﬁgeom{ e} 100
[graus]
50
S50 100 50 0 50 100 150
8
_jD 4
-100
-150

Maxima diferenca: theta=142° ->~4,55° de erro.



7.3 Anexo 3 — Programacdo para o célculo das tensdes

[ numeracéo de formulas conforme Radi (2011) ]
Parametros dados

r; = 15.5:
r, = 18.5:
d=44:
Tx12 =0:
Gool] =0
Gwzz =1
p;=0:
p,=0:
a = L-sqlrt((d'2 —r?— 2)2 — 4.2, 2) :
2-d 1 2 1 "2
Parametros calculados:
5)
h[ 1’12 — r22 + d2 ]
o, = arccosh) ————— | :
! 2-d-r,
" 7”22 — rjz + d2
0L, = -arccos TIZ :
p, o=
pi=oa—= :
p, 0=a,

Determinacéo de phi_n e suas derivadas:

Como todos os parametros j& foram calculados anteriormente (na determinacédo de

K), temos diretamente que:
(17) (ok)
¢, = o= A, -cosh(2-a) + B, + C,sinh(2-01) :

Oy = 002:4,sinh(2-0) +2:C-cosh(2-a1) :
Oy = 044 -cosh(2-0) +4-C,sinh(2-at) :
(18) (ok)

¢ = (n,0) >4 (n)-cosh((n+1)-a) + B (n)-cosh((n —1)-a) + C (n)-sinh((n + 1)

n

-o) +D”(n)-sinh((n —1)-a):

Brtan = (n,a) —A4 (n)-(n+1)- sinh((n+1)a) + B (n)-(n— 1)-sinh((n — 1) o)
+ C (n)-(n+1)-cosh((n+1)a) + D (n)-(n—1)-cosh((n—1) a) :

0, = (na) =4 (n)-(n+1)>cosh((n+1) &) + B (n)(n — 1)*-cosh((n — 1) @)

n

+C (n)-(n+ 1)2~sinh((n +1)a) + D (n)-(n— l)z-sinh((n —la):
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Assim, temos o phi, sua primeira derivada e sua segunda derivada:
¢1(a) n<2

¢N = (n,OL)—>| (pﬂ(n,(x) "2 :

(plinhal(a) n<2

¢/in/1an(n’ OL) n>2

(PlinhaN = (n’ OL) _>|

¢linha21(a) n<2

no) n>2 ‘

Dmpaoy = (m0) =
(P/inhaZn(

Determinacéao de psi_n e suas derivadas:
Com o auxilio de

(58) corrigida

Toolz_(6_2'|a1|_cosh(2_a2) _6_2‘|a2|'005h(2'061)]
1 sinh(2+(e,-0,))

P —e_zl|a1|-sinh 2. _2.|a2|. ; .

2 ( 062) +e smh(z oc]) '

T sinh(z-((x] — a2>) :
Usando
(53) (ok)
¥ o= (ma) =20 e (n — 1) ¢ "% sinh () -

(50) (0K?)

= (m, o) —>2~rw12'm'g”(m, o) :

Podemos calcular os parametros da
(63) ok

4y =Ny l(n) (Pn(”’ o 0y) ¥, (mooy) + P (n oo 0p) ¥, (n0n) + O, (n 0y )

n

-qf‘m(n, o) + 0, (m o, 1)) qf*m(n, oc2>) :

1
b, =n— H (n) (Pn(_”’ oy, 04) ¥, (m0y) + P, (-0 0y) ) () + 0, (s 0t

aZ) 'lplm(n’ al) + QII( - aZ’ OC]) ' lP*m(n’ aZ)) :

1
c =n—- n, o, o

n ]_In(n) (Un( ] 2)'lflm(n, OC[) +Un(n,a,a1)-‘f’m<n,oc

: 2) + (Vn(”’ O‘z’az)

+ cosh(2m-0, = (n = 1)-0,)))- ¥ (m0) + 7, (m 0 0))- ¥ (nat,))

1
dn =n— H (n) (Un< -, al’ (XZ).HUm(n’ a]) + Un( - 062, al) 'lPrn(n’ (XZ) + Vn<_n’ a]’

n

(xz)-‘z"*m(n, o) +V,(-n (xj)-‘i’*m(n, az)) :

Assim, temos:
(17) (ok)
¥, = o.—a,-cosh(2-a) + ¢, sinh(2-at) :
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Vinhat = 0—2- " Sll’lh(Z'OL) +2'C]'COSh(2'OC) :
Vinha21 7= o—4 a COSh(Z'(x) +4'CI'SiIlh(2'OL) :
(19) (ok)

Y = (n,0) —a (n)-cosh((n +1)-a) + b (n)-cosh((n—1)-0) + ¢, (n)-sinh((n +1)-at)
+d() h((n—l) a):

Vihan = (n, o) —a, (n)-(n+1) sinh((n+ 1) o) + b, (n)-(n— 1)-sinh((n — 1) o)
+c,(n)-(n+ 1)-cosh((n+1)a) + d (n)-(n— 1)-cosh((n—1)a) :

v, o= (n,a)—a,(n)-(n+1)%-cosh((n+ 1) &) + b, (n)-(n — 1)*-cosh((n — 1) @)
+ec (n)-(n+1)*sinh((n+ 1) &) +d (n)-(n — 1)*-sinh((n — 1) @) :

Assim, temos o psi, sua primeira derivada e sua segunda derivada:

l//](OL) n<2

v, = (n,o)— :
N ( ) l//n(n,oc) nz=2

l,//in/m]((x) n<2
l’Ulin/mN = (n’ O() -

ll/[[nha,l(na O() n>2

ll/linhaZ](oc) n<2
1VlinhaZN = (n’ (X) - n OC) n>0 :

l///inhaZn (

Sigma_alpha

A tensdo é calculada a partira das tensdes fundamental e auxiliar.
Tensdo fundamental:

(15)

(zero) = (0, 0) > L
o (o 6) (cosh(ot) — cos(B(0,0)))

+0 ", sinh*(a)-sin’(B(, 8)) —2-7 (1 — cosh(ct)-cos(B(c, 8))) -sinh(cr)
sin(B(oc6)) )

Tensdo auxiliar:

5 (07,,+(1 = cosh(at) -cos(B(e: 0)))*

(20) corrigida 2x?
G(”m)a = (0,0)— —g-(cosh(lu) — 2-cosh(a) -cos(B(0, 8)) + cos(2 -B(c,0))) — B
100
-sinh(a) - (cosh(a) — cos(B(0,8))) + Z ( (Z)N(n, o) ~(cosh(0c) -cos(n-B(a, 0)) -

n=1
-(cosh( o) ~cos(B(0, 8))) -cos(n-B(c, 6)) + n-sin(B(c, 0)) -sin(n-B(c, 0))) + l[/N(n,
o) - (n?-cos(B(a, 8) ) -sin(n-B(ct, 0)) - (> — 1) -cosh( ) -sin(n-B(a, 8) ) -n-sin( B(a,
0))-cos(n-B(0, 0))) — 9y @) -sinh () -cos(n-B(e, 8)) — v, (n, o) sinh(a)
-sin(n-B(a, G))) :

87



Portanto:

— (zero) (um) .
o =(a8)—c " (a6) +0 " (a.0):
Furo 1:

auxiliarl

.= ang—>6a<oc],ang> :

auxiliarl
plot| g T

Furo 2:
auxiliar2 no—o (0. an .
o ang a( >4 g) ’

ANNA

hs

auxiliar2
plot| o ,~T.T

NFS
INER
wa
h|:
51

Tau_beta.alpha

A tensdo € calculada a partira das tensfes fundamental e auxiliar.
Tensdo fundamental:

(15)

‘szero) = (0o, 0)— ! 6’ —o ]-(1—cosh(a
= (09) (cosh(oc)—cos(B(oc,e)))z(( > )| (<)

-cos(B(c,8)))-sinh(e)-sin(B(0, 0)) + Twlz-(sinhz((x)-sinz([}(oc, 9)) — (1
— cosh(at) -cos(B( 6)))?) )

Tensao auxiliar:
(20)
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11”"1)13& = (0, 8) —-(K-sinh(o) + B-cosh(a))-sin(B(c, 0)) + %-sin(Z-B(o&, 0))
100

+ (cosh(a) — cos(B(a,0)))- Z“ln'<¢hnhaN(n, o) -sin(n-B(e,8)) —y, ,  (n,0)
-cos(n-B( o, 6))) :

Portanto:
_ zero) um) .
v = (08) =7 (0,0) + 7 5 00)
Furo 1:
Tauxz‘liar] = agne—71 (o..ang) :
Po & Ba< r g)-
lot Tauxilz'ar] T
p ( B )
1]
n
Y M in L
-z Iy ) e
-14
-24
Furo 2:
Taux[liarz = ang—71_ (o, ang) :
Po & [506( 7 g).
lot Tau,\'ilial”Z -T.T
p ( B’ )
CTET
] ] 4
0.4
06
08 1
sigma_beta

A tensdo é calculada a partira das tensdes fundamental e auxiliar.
Tensao fundamental:
(15)
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Er0 i (a,0) - ! o -sinh’(a)-sin®(B(0, 6)) + o~
B () (cosh( o) —COS(B(OL,G)))Z( . (<) (B(c-.6)) >
(1 —cosh(a) -cos(B (o, 9)))2 +2-TOO12-(1 — cosh(a) -cos(B(c, 8)))-sinh(o)
-sin(B( o, 6))) :
Tenséo auxiliar:

(20)

o(”'")ﬁ = (oc,e)—>§~(cos(2-oc) — 2-cosh(a) -cos(B(0, 0) ) + cos(2-B(c 8))) + B
100

-sinh( o) - (cosh(a) — cos(B(0,0))) + Z((Z)N(n, o) (cos(B(0, 8))-cos(n-B(0,9))

+n-sin(B(0,8)) -sin(n-B(0, 8))) — ¢, (n0)-sinh(o)-cos(n-B(cs0))

+ ¢, oy 0)-(cosh(a) —cos(B(e, 8))) -cos(n-B(c,8)) + v, (n, ) (cos(B(ar,
0))-sin(n-B(c,8)) — n-sin(B(o, 8) ) -cos(n-B(e. 8))) — v, ,  (n, o) sinh(e)-sin(n
B(0,8)) + WlmhazN(n’ o) (cosh(o) — cos(B(c, 8)))-sin(n-B(a, 9))) :

Portanto:

GB = (o, 0) —>G(ZW(})B(OL, 0) + G("m)ﬁ((x, 0) :

Furo 1:
auxiliarl
/\ | /\
V‘n zvju \/z |
4 2 o 2 4
E

5= ang—>0ﬁ(al, ang) :

auxiliarl
plot| © e T ..n)

Furo 2:
auxiliar? = anoe—o (0. ang) :
auxiliar2
plot(G ,—n..n)
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7.4 Anexo 4 — Programagcao para a deducao das tensdes a partir de h,

hx = (0, B) —(B-o. + K-In(cosh(a) -cos(B))) - (cosh( ) -cos( 2 (
-cos(n-B) + l[/N(n, (x)-sin(n-B))

(0,B)— (B o+ KlIn(cosh(a) —cos(B))) (cosh(a) — cos( Z (nd_Nocos(nB)

+ny_Nasin(nB))

(1 (0, B)) = sin(p)

oo,

o = (cosh(a) —cos(B))-i(i@X(oc,B))J — sinh(a) -

a op | B

%( (o, [3)) +cosh(oc)'(hx(0€,B))
Ksin(B)2

KcOs(B) + cosh((x) —COS(B)

(cosh(a) — cos(B)) + (B o+ Kn(cosh( o)

—cos(B))) cos(B) + 2 ( -nd_Nocos(nB) n — ny_ Naosin(npB) nz)]

_ sinh(al) [(B ; (o) B ] (cosh(ct) — cos(B)) + (B ot + Kn(cosh(a)
— cos(B))) sinh( o i([—n(b N(x)cos( B)+[§—anw_Nocjsin(nB)j]
— sin(B) [Ksin(ﬁ) + (Ba + Kln(cosh( o) — cos(B))) sin( i

-n6_Nasin(nB)n+ny_Nocos(np) n)] + cosh( ) [(Boc + K 1n(cosh(o)

—cos(B))) (cosh(a) — cos( 2 nd_ Nocos(nB) +n\|1_N0csin(n[3))]

o = (cosh(cl) —cos(g))-ai(ai@%(a,ﬁ))] — sinh(0) (1 (0. )} — sin(p)

oo
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K cosh(a) _ Ksinh(oc)2 cosh(o
cosh( o) — cos(P) (cosh( o) —cos(B))2 ] (cosh{a)

(cosh(a) — cos(B)) [

K sinh( o)
cosh(a) — cos(P)

— cos(B)) +z[3+ ]sinh(a) + (Bot+ Kln(cosh(cl)

—cos(B))) cosh(a) + 2 [ 622 no_ N oc] cos(nP)
n=1{ | oo
+ ;zz ny_No sin(nB)]] — sinh(a) [B—f- coshl(<osci)nll(go)s([3) J(cosh( )

—cos(B)) + (Ba + Klin(cosh(o) — cos(B))) sinh(cr) + Z

((;_anq)_Na) cos(npB) + [aa—an\u_Noc) sin(nB))] — sin(p) [KSin(B) +(Ba

+ K1n(cosh(o) — cos(B))) sin( Z (-nd_Nasin(np)n

+ny_Nocos(nP) n)] + cosh(B) {(BOL + K In(cosh(o) — cos(B))) (cosh(a)

— cos( Z (nd_Nocos(n B)—l—n\u_Nocsin(nB))J

0 0
ot o) 0

- (cosh(a) — cos(B)) [[B + Coshf;)n}l(?o)s(g) ) sin(B) + ,2(

-(:—anq)_m) sin(np) n + (:—anw_m] cos(np) nJJ

E, considerando:

¢, = o= A, -cosh(2-a) + B, + C,sinh(2-01) :

¥, = o—a,-cosh(2-a) + ¢, sinh(2-a) :

¢ = (n,a) =>4, (n)-cosh((n+1)-a) + B (n)-cosh((n —1)-0) + C,(n)sinh((n + 1)
‘o) + D (n)-sinh((n —1)-a) :

v, = (n,a)—>a,(n)-cosh((n+1)-a) +b (n)-cosh((n—1)-a) +c,(n) sinh((n +1)-0)
+d (n)-s inh((n—1)-a) :
¢, (o) n<2

q)N - (n,(x)—> (pn(n,(x) n>?2 :
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l//I(OL) n<2
v, = (na)—

l;/n(n, o) n=>2 :
Obtemos, explicitamente:
0 d . 0 .
o = (cosh(a) —cos(B)) - — o [a( (o, [3))] - smh((x)-g(hx(oc,[i)) — sin(P)

B (1 (o, B)) +cosh(0¢)-<hx((x,[3))

cos Ksin(B)2 o n(cosh(o
Keos(B) + cosh(a) — cos(PB) + (Bo+ Kin{eosh(a)

—cos(B))) cos(B) — (A1 cosh(2a) + B, + C, sinh(2 OL)) cos(B) — (al cosh(2 a)

(cosh(a) —cos(B))

o2

+¢;sinh(2a)) sin(B) + Z (—(An(n) cosh((n+1) ) + B, (n) cosh((n — 1) at)

n=2
+ C (n) sinh((n + 1) &) + D (n) sinh((n —1) (X)) cos(nB) n* — (an(n) cosh( (n
1

+1)a)+ b, (n) cosh((n—1)a) + c,(n) sinh((n+ 1) o) + d, (n) sinh((n — 1) OL))

sin(nB) n*)) — sinh(o Ksinh(oc) cosh( o) — cos o
(#B) 7)) — sinh( )[[mcosh(a)_m(ﬁ) (cosh(a) —cos(B)) + (8

+ K In(cosh(o) — cos(B))) sinh(o) + (2A sinh(2 o) + 2 C, cosh(2 (X)) cos(B)

+ (24, sinh(20) +2¢; cosh( 20c sin(B) + z ((4,(n) sinh( (n+1)a)(n+1)

n=

+ B (n)sinh((n —1)a) (n —1) + C,(n )cosh(( +1) )(n—l—l) D, (n) cosh( (n
—1a) (n—1))cos(nB) + (a,( n)sinh((n+1) &) (n+ 1) ) sinh( (n
—Da)(n—1) + (n)cosh((n—l—l) o) (n+ 1) +d (n )cosh( n—l o) (n—1) )

sin(nB)))

—sin(B) | K'sin(B) + (B + K In(cosh(a) —cos(B))) sin(B) — (4, cosh(2a) + B,

+C;sinh(2a) ) sin(B) + (a; cosh(2a) + ¢, sinh(20) ) cos(B) + 22(

—(An(n)cosh((n+ ) o) + B, (n )cosh((n —1) &) +C,(n) sinh((n + 1) o)
+ D, (n) sinh((n — 1) o, )) s1n( B)n+ (an(n) cosh((n + 1) &) + b (n) cosh((n
—Da)+ c,(n) sinh((n + 1) o) +d (n) sinh((n — 1) oc)) cos(nB) n))
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+ cosh(a) | (Bo + Kln(cosh(a) —cos(B))) (cosh(e) —cos(B)) + (4, cosh(2a) + B,

2]

+C, sinh(20c)) cos(B) + (4, cosh(2a) + ¢, sinh( 20( sin( z

((An(n) cosh((n+1) o) + B (n) cosh((n — 1)) +C (n )smh(( + ) o)
+D,(n) sinh((n — 1) oc)) cos(nB) + (an(n) cosh((n+ 1) ) +b,(n) cosh( (n
—1)a) +¢, (n)sinh((n+1) &) +d (n)sinh((n —1) ) sin( ))

0,5 = (cosh(c) —cos(B))';—a(;—OL(hx(a,B))J —sinh(0) - (@ B)) — sin(p)

oo
L) o) (1)
cosh(a) — cos K cosh(a) _ Ksinh((x)z cosh(o
(cosh{a) #) [[ cosh(a) —cos(B)  (cosh(ar) — cos(B))’ ]( e

K sinh( o)
cosh(a) — cos(B)

— cos(B)) +z(3+ ]sinh(oc) + (Bo+ Kln(cosh(a)

—cos(B))) cosh(a) + (44, cosh(2at) +4C, sinh(2 o)) cos(B) + (44, cosh(2 o)

+4c¢, sinh(2 oc)) sin(B) + Z ((An(n) cosh((n+1)a) (n + 1) + B (n) cosh((n
n=2

—a)(n— 1) + C (n) sinh((n + ) (n+ l) +D, (n) sinh((n—1) o) (n
— 1)2 cos(np) + (an(n) cosh( (n ) (n+ 1) b, (n cosh((n—1)a) (n — 1)2

+ )
+ ¢, (n) sinh((n+1) o )(n+1)2+dn n)sinh((n —1) o )(n—l)z) m(nB)))

(cosh(a) —cos(B)) + (B o + KIn(cosh(c)

—cos(B))) sinh(a) + (24, sinh(20) +2C, cosh(2a)) cos(B) + (24, sinh(2 )

+2¢, cosh(2 sm Z )sinh((n + 1) &) (n+1) + B, (n) sinh((n

—Da)(n—1) +Cn( )cosh((n+ 1)a) (n+1) +D,(n) cosh((n— Ha)(n— 1))
cos(nB) + (an(n) sinh( (7 +1) o) (n+ 1) + b (n) sinh((n — 1)) (n — 1)
+cn(n)cosh((n+ Do) (n+1) +dn(n)cosh( (n—1)a) (n—1) )sm(nﬁ)))

94



— sin(P) [Ksin(B) + (Bo + Kln(cosh(o) — cos(B))) sin(B) — (4, cosh(2a) + B,

+C, sinh(20c)) sin(B) + (a cosh(2a) +¢, sinh(20c)) cos(B) + Z(
n=2
—(An(n) cosh((n +1) o) + B (n) cosh((n — 1) &) + C (n) sinh((n + 1) )

(n
+ D, (n) sinh( (2 —1) o, )) sm( B)n+ (an(n) cosh((n + 1) &) + b, (n) cosh((n
—1)a) +¢, (n)sinh((n+1) &) +d (n)sinh((n —1) oc)) cos(nB) n))

+ cosh(B) [(Boc + K In(cosh(o) — cos(B))) (cosh(a) —cos(B)) + (A cosh(2a) + B,

+ C;sinh(2a)) cos(B) + (a, cosh(2a) + ¢, sinh(2 ) ) sin( Z

((An(n) cosh((n + 1) &) + B, (n) cosh((n — 1) &) + C,(n) smh(( —I:- 1) o)
+D,(n) sinh((n — 1) oc)) cos(npB) + (an(n) cosh((n+1)a) +b (1) cosh( (n
—1a) + ¢, (n) sinh((n 4+ 1) o) +d, (n) sinh((n — 1) )sm ))

Tﬁ;:-(cosh(a)—cosm))-i[%( (e, B>)]

[0/

K sinh( o)
cosh(a) — cos(pB)
+2C cosh(Z(x)) sin(B) + (2(11 sinh(2 o) + 2¢, cosh(2oc)) cos(B) + Z(

n=2
( (n) sin ((n+1) ) (n+1) + B (n) sinh((n — 1) o) (n — 1) + C (n) cosh((n

) sin
)a) (n D (n) cosh((n—1) o) (n — l)) sin(nPB) n + (an(n) sinh( (n

) o) (n b,(n )sinh((n — 1)) (n—1) +c,(n) cosh((n+1)a) (n+1)
(n) cosh((n —1la)(n— 1)) cos(nB) n))

(cosh() — cos(B)) [[B ; ]sin(B) — (24, sinh (201

oo
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7.5 Anexo 5 - Programacdo da comparacdo das tensbes radiais

deduzidas com as propostas por Radi (2011)

Neste teste, serdo consideradas as tensdes como a soma das tensdes fundamental e
auxiliar.

Primeiramente, considerando as formulas deduzidas por Radi.

Em seguida, comparando com as rededuzidas por meio da férmula de Jeffery.

[ numeragéo de formulas conforme Radi (2011) ]

Tensdo fundamental (Radi):

(15)

e (o, 0) — ! % (1 = cosh(a) -cos(B(c 0) ) )
o (cosh(cr) — cos(B(0,8)) ) (

+ ze_?-sinhz((x) -sin’(B(0,0)) — 2:77,,-(1 — cosh(a) -cos(B(c., 8) ) ) -sinh(a)

ssin(B(0,6)) ) :

(zero)

e 2]

= (0, 0) > ! (07, sinh®(c) sin’(B(.0)) + 0™,

p (cosh(a) — cos(B(a, 6)))2
(1 — cosh( o) -cos(B(a, 6)))2 +2'Tw12-(1 — cosh( ) -cos(B( 0, 8) ) ) -sinh(ar)

ssin(B(0,6)) ) :

T(Z@m) = (0,0)— I “ —67 )(1—cosh
= () (cosh(oc)—cos(B(oc,e)))z((G =) ()
-cos(B(c, 6)))sinh(at) -sin(B(0, 8) ) + 7+ (sinh?(cx) -sin®(B( s 8)) — (1
—cosh(oc)-cos(B(oc,G)))z)) :

As componentes de tensdo derivadas da funcdo de tensdo auxiliar sdo (Radi):

(20)

“”")a: (o, 9)—»—%-(cosh(2-oc) — 2-cosh(a) -cos(B(0, 8) ) + cos(2 -B(c, 8))) — B
100

-sinh(a) - (cosh(a) — cos(B(0,8))) + Z ( q)N(n, o) ~(cosh((x)-cos(n'[3((x, 9))—}12

+(cosh(er) -cos(B(0 8)) ) -cos(n-B(0, 8)) + n-sin(B(cx ) ) sin(n-B(c,0))) + %
1) (-co5( B0 0))-sin(-(c. 0)) - (7 — 1)-cosh(c0)-sin(r-(c. 0)) -
sin(B( o, 0)) -cos(n-p(0, 6))) — ¢ (n, &) sinh( ) -cos(n-p(e, 8)) — v (n, )

ssinh(ct) sin(n-B(0t,6) ) )
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(o, 9)—>—%K(cosh(20ﬁ) — 2 cosh(a) cos(B(c, 8)) + cos(2B(0,8)))

— Bsinh(ct) (cosh(cx) — cos( i(n([) N ot (cosh(cr) cos(nB(cs 6))
—n* (cosh(a) — cos(B(cs 6))) cos(nB(a, 6)) +nsin(B(cs 8)) sin(nB(c.6)))
+ % ny_ No(n?cos(B(o, 8)) sin(nB(c0)) — (n* — 1) cosh(a) sin(n (o, 6))
—nsin(B(a.6)) cos(nB(0,0))) — g (n, o) sinh(ax) cos(nB(as 8)) — v (n.

o) sinh(c) sin(n (o, 6) )j

406" = (o, 6)—>§-(cos(2-ot) — 2-cosh(a) -cos(B(0, 0)) + cos(2-B( 0))) + B
0

10
-sinh( o) - (cosh(a) — cos(B(0,0))) + EI(Q)N(n o) - (cos(B(c,8))-cos(n-B(0,0))
+ n-sin(B (o, 8) ) -sin(n-B(0,0))) — (Z)N( o) -sinh( o) -cos(n-B(c, 0)) + (Z)N(n, o)
(cosh(a) — cos(B(0,8)))-cos(n-B(e, 8)) + y, (n, ) (cos(B(c 8) ) -sin(r-B(c, 6))
—n-sin(B(0, 0) ) -cos(n-B(0,0))) — v/, (n, &) -sinh(0:) -sin(n-B( 0, 0) ) + v, (n, )
-(cosh(cr) —cos(B(c 8)) ) -sin(n-B(e 0)) | :

#é”’”)m = (@, 0) = - (K-sinh(a) + B-cosh(a))-sin(B(ct 6)) + g'Sin(ZB(a’ )

100

+ (cosh(a) — cos(B(c, 0)))- ;n~ ((ﬁN(n, o) -sin(n-B(0,0)) — l//N(n, ) -cos(n
Blec0)) ) :

Condlc;oes do teste:
=155:

= 18.5:
d—44

Teste de rededucéo (apenas para alpha):
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umTESTI
G( E)

= (o, 0) > (cosh(o) —cos(B(,8))) | Kcos(B(0.,8))

o

Ksin(B(0, 0))’
cosh(a) — cos(B(o, 8))

+ (Ba + KIn(cosh(a) — cos(B(c,8)))) cos(B(c,8))

- (A] cosh(2a) + B, + C, sinh(2 OL)) cos(B(o, 0)) — (al cosh(2 o)

100

+¢, sinh(Z(x)) sin(B(0,0)) + (—(An( ) cosh( (n B (n) cosh((
n=2
—1)a) +C (n)sinh((n+1) ) + ) sinh((n — 1) ))cos
— (an(n) cosh((n+1)a) +b (n )cosh((n —1) ¢, (n) sinh((n + 1) )
+d (n) sinh((n — 1) OL)) sin(nB(c, 0)) — sinh( o [ [B
K sinh( o) B
+ cosh(@) — cos(p(e.0)) ] (cosh(o) —cos(B(,0))) + (B o + KIn(cosh(a)

—cos(B(c, 8)))) sinh(a) + (24, sinh(20) +2C; cosh(2 ) ) cos(B(c., 8))

100

+(2a,sinh(20) + 2 ¢, cosh(2 ) ) sin( z n) sinh((n + 1) &) (n

+D (n) cosh((n —1) o) (n — 1)) cos(n B(oc 9)) + ( n) s1nh((n +1Da)(n+1)
—l—bn(n)sinh((n— o) (n—1) + ¢, (n) cosh((n+1)a) (n+1) d (n ) cosh( (n

+1)+B”(n)sinh((n—1)oc)(n—l) cosh( Jf o) (n+1)
()

— 1)) (n = 1)) sin(nB(6)) )) — sin(B( 6)) | Ksin(B(x.6)) + (B

+ K1n(cosh(cr) — cos(B(00)))) sin(B(c. 8)) — (4, cosh(2ct) + B,

+C sinh(20c)) sin( B( (al cosh(2a) +¢, smh(20c)> cos(B(0,8)) + (

( cosh( n+1)a) + B (n)cosh((n—1)a) + C () sinh((n + 1
n) sinh((n — )) sm( B(c,8))n (a n) cosh((n + 1) &) + b, (n) cosh((n
) ) c,(n) smh( (n+1)a) +d (n)sinh((n—1) oc)) cos(nB(a, 0)) n))

+ cosh(a) | (B o + K1n(cosh(a) — cos(B(0,0)))) (cosh(a) — cos(B(0,0)))

+ (4, cosh(20) + B, + C;sinh(20)) cos(B(0, 0)) + (4, cosh(2 o)

100
+ ¢, sinh( 20c))s1n 0)) + Z((An(n) cosh((n+1) o) + B (n) cosh((n — 1) at)
n=2
n)sinh((n + 1) &) + D (n) sinh((n — 1) ) cos(nB(0,0)) + (a,(n) cosh( (n
) + b, (n) cosh((n — 1) &) + ¢ (n) sinh((n + 1) ) +d (n) sinh((n — 1) oc))
sin(n B (o, ))))
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G(um TESTE) (

Compara = (0, 0) —>G(um)a( 0,0) — 0,98) :

Radi:
(um)
© a( op O)
2.037596149
Jeferry novo
(umTESTE)
© a( op 0)
2.037596141
Comparacao entre eles:
Compara(a], 0)
8.107
Tensao fundamental e auxiliar:
Para o furo 1;
(ZEROauxiliarl) . (zero)
o , =0 a((xl, 6])
plot( G(ZEROauxi/iarl] , 91 - ..TE)
o
1 -
0g A
0a
0.4 4
0z
S P T
4 2 4 4 2 4
aj

Ou seja, a tensdo fundamental sigma_alpha (0) esta correta (a dire¢do da tensdo

radial varia com theta).

Mas, em contrapartida, a auxiliar:
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UMauxiliarl um
o Mau ):=G(’)(a,6):
o o\ 1”71

plot( O_(UMauxi/iar[) ’ 01 - ..TE)

o

N&o zera a fundamental (como deveria ser)

TESTE, com o expandido do Jeffery:

UMauxiliar1 TEST. umTEST.
oM RS B(a,@):
o o\ I’ 711

UMauxiliar1 TEST
plot(O'< e B , 6” =-7 ..TE)

E praticamente igual & outra.
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OU, se subtrair o deduzido de Radi...

4= Compara( a, angulo) :
plot( A, angulo =-7 ..1t)

angulo

Ou seja, a férmula encontrada por Radi é equivalente a rededuzida em Jeffery. O que
pode estar errado sdo os parametros que nela sdo inseridos (por ex, A_n, etc). Ou
seja, é necessario conferir a aplicagdo das condic¢Ges de contorno.
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7.6 Anexo 6 — Programacdo para a verificacdo das tensbes radiais

deduzidas através da expansao em séries de Fourier

[ numeragéo de formulas conforme Radi (2011) ]

(27)

S, = oc—»e_|°(|'(0w”-cosh(oz) + Gw22'SiHh(|0‘|)) :

(28)

s = (na) az.(gwﬂ - G“’”)-gn(n, o) -sinh(|of) :
(29)

5, = (n, 0()—>—4~‘L'w12-g”(n, o) -sinh( o) :

(27)

ly = a_’_fmzz’e_z'm' :

(28)

T = (n, a)—»z-(cwzz — O'OO”)'g”(n, o) -sinh( o) :
(29)

t, = (n,(x)—>4-roo12-gn(n, a) -sinh(|o]) :

(30)

g = (o)~ "1 (cosh(a) — n-sinh([of)) :
Tensdo fundamental da eq (15) de Radi (ja conferida)

1
= (0,0)—
o (o 6) (cosh(o) —cos(B(0,0)))

(zero
o )

+o” Z-Sinhz((x) -sinz(B(oc, 0)) — 2-1'96]2-(1 — cosh( o) -cos(B( 0., 8))) -sinh(a)

2

sin(B(0,6)) ) :

#G(zezr'o) — (OL, 9) N 1

b (cosh(a) — cos(B( e, 9)))2
(1 —cosh(a) -cos(B( o, 9)))2 +2'1w12-(1 — cosh(a) -cos(B(c, 8)))-sinh()
ssin(B(0,6)) ) :
r(zem) = (0,0)— 1 o —oc  ](1—cosh(a
= () (cosh(cr) — cos(B(0, 8)))> (% ) ()

-cos(B(c, 6)))sinh(at) -sin(B(0, 8) ) + 7+ (sinh?(cx) -sin*(B( ot 8)) — (1

— cosh(a) -cos(B(c, 8)) )2)) :

> (Goo”-(l — cosh(a) -cos(B(c, 8)))*

(o, sinb’ (o) -sin’(B(0, 8)) + 0~

22

Tensdo fundamental aberta em séries de Fourier da eq (26) de Radi (a conferir):

100
G(zem TESTEfourier)

n=1

B(0))) :

= (0.0) =5,(0) + 2, (5,(n.)-cos(n-B(c. 6)) +s,(n.a)-sin(n
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= (0.0)—1)(0) + X (T, (n ) sin(n-(c0)) +1, (n @) cos(n

T(zem TESTEfourier)
Pex n=1

B, 0))):
Diferenca:
— ((X, 9) _’G(ng)a( o 9) (zemTESTEfourler)a( o 9) :

Gd(fezf'encaF ourier
Diferenca Fourier:

Para o furo 1:

(ZEROauxiliar])
o =

o
ZEROauxiliarl
plot(d( ) ,0 :—n..n)
o 1
1_
05
06
04
0z
-« iz =z 0 m m 3m o
4 2 4 4 2 4
%

Teste Fourier:
(zeroTESTEfourier) .
NCACAE

O_(ZER Oauxiliar1 Fourier)
o
,Gl=—n"n)

ZEROauxiliar1Fourier)
[04

plot( o
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0.z
08+
04
0.2
o iz x =z 0 = x 3=
4 2 4 4 2 4
ai
Comparacao:
(ZEROauxiliarl Comp) i
c o Gdi/é/‘encaFouricr( a/’ 91) :
ZEROauxiliar1 Comp)
plot(cr( l ) ,0 :—TC..TE)
o 1
5x10-1

-25 % 10710 4

Ou seja, por experimentacdo, ambas as formulas séo idénticas.

El
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7.7 Anexo 7 — Programacao para a conferéncia da eq.( 27 )
[ numeracéo de formulas conforme Radi (2011) ]
(20) tens&o auxiliar corrigida (termo de B*sinh(alpha) que faltava paréntesis)

o = —g-(cosh(la) — 2-cosh(a) -cos(B) + cos(2 -B)) — B-sinh( ) (cosh(o)

—cos(B)) + Z [ ¢ - cosh ) -cos(n-B) —n2~(cosh(oc)—cos([3))~cos(n-[3) +n

-
-sin(PB) -sin(n-B)) +% v, -(n*-cos(B) -sin(n-B) - (n* — 1) -cosh(at) -sin(n-B) -n
n')) —

(p/mhan S1 nh( ) COS(n'B) - w]mhan'smh(a) 'Sin(n'B)j :

'Sll’l COS
(26) tensdo fundamental:

z S,-cos(n-B) +s,-sin(n-p)) :

Dai:

O-OQ(): O_(OJ + O_(l)a

(1

o = s(,-g-(cosh(z-a) — 2-cosh(a) -cos(B) + cos(2 -B)) — B-sinh(a) (cosh(cx)

— cos( 2 S -cos( -I—sn~sin(n-[3)) + Z( -(cosh(et) -cos(n-B) -n*

-(cosh(c) -cos(B) ) -cos(n-B) + n-sin(B) -sin(n-B) ) + %'Wn'(HZ'COS(B)~Sin(n'B)
~(n* = 1)-cosh(a) -sin(n-B) -n-sin(B) -cos(n-p) ) — 9 pSinD(02) -cos(nB)

—y, . -sinh(o) -sin(n-B)j :

Queremos mostrar que a (31) é equivalente a (20):
(31)

G =5+ - %-(K-cosh(z-oc) + B-sinh(2-a) ) + (K-cosh(o) + B-sinh(ct))-cos(P)

— §~cos(2-[3) + 2;7'((¢11(n —1)-2-cosh(a)-@ (n) + @ (n+1)-2-sinh(c)
n=1
En(n) + 2-n-Sn)-cos(n-B) + (‘Pn(n —1) —2-'Pn(n)-cosh( o) + g (n +1)—2

()
' .PEn(n) 'Sinh((x) + 2-n-S,1) 'Sin(n‘B) )
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Que equivale a:

O = Syt 9, — %-(K-cosh(Z-oc) + B-sinh(2-a)) + (K-cosh(a) + B-sinh(a))-cos(pB)
- cos(2-B) +n;(Sncos(nB) +sin(nB)s,) + ,,21217'(((1)”(” —1)-2
cosh( o) @ (n) +@ (n+ 1)—2-sinh((x)~CDE”(n))-cos(n'B) + (‘I’n(n —1) =2 (n)
-cosh(a) + ¥ (n+1) —2-‘I’En(n)-sinh((x))-sin(n'B)) :

Usando:

(33)

D = (n—1)n(n+ 1)-¢’Z :

¢ = (n—2)(n— 1)'n‘¢n_1 :

@, =nn+1)(n+2)9 ,:

cI)En = n'q)linhan:

(34)

¥ o= (n—1)n(n+ 1)-1//'1 :

Y= (n—=2)(n— l)-n-l]/ni] :

'Pn-f-] = }’l(l’l + 1)(71 +2)'ll/n+] :

lzuEn = n.wlinhan :
Aplicados em:

1 .
2—%-((d5’1_1 —2-cosh(a) @ +@  — 2-smh((x)-<DEn)-cos(n-|3) + (‘P -2-¥

n—I
-cosh(a) + ¥, — 2-'1’En~sinh(oc))-sin(n-[3))

(1 =2) (n=1)ng, ;= 2cosh() (n = D) (n+1) g, +n(n+1) (n+2)9,

— 2sinh( o) nqb/m/mn) cos(npB) + ((n —2)(n—=Dny ,—2(n—1)n(n
+1) y,cosh(a) +n(n+1)(n+2)y,  —2ny,  sinh(a))sin(nB))
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Resulta:

o =85+ — l -(K-cosh(2-a) + B-sinh(2-at)) + (K-cosh(o) + B-sinh(c))-cos(B)

031 1

—7 cos(2-B) + Z(S cos(nB) + sin(np) s,)
—2cosh(a )(n—ln)n(n+l)(p +n(n+1)(n +2)
cos(nB)+((n—2)(n—l)nl//n_]—2( —1)n(n

+2)y ., —2ny, sinh(oc)) sin(nB)) :

—_

Observando o segundo somatdrio de n=1...infinito

#z (( (n—2) (n—l)n¢ I—ZCosh( )(n—l)n(n—i—l)d)n—l-n(n—i-l)(n
+2) o . — 2sinh( o) n¢lin/mn) cos(nB) + ((n =2)(n—=1)ny ,—2(n—1)n(n
+1y, COSh(OL) tnm+1)(n+2)y  —2n wjmhansinh(a)) sin(nB))

Pode-se deduzir (ao final deste Anexo) que ele é equivalente a:

, T Z ( ) cosh ) cos(nB) " — cos(nB) cos(B) n — sin(nB) sin(B) n
— cosh( ) cos(nB)) -y (sin(nP) cosh(o) n? — sin(nB) cos(B) n*

n

+ cos(np) sin(B) n — sin(nB) cosh() ) -sinh(cr) cos(n p) R
—sin(nB) v, , sinh(o) )

O que leva ao cancelamento de phi_1:
(1)

G =5 — %-(K-cosh(z-oc) + B-sinh(2-0) ) + (K-cosh(cr) + B-sinh(cx))-cos(P)

a3l 0

— 7 cos(2-B) + z S, cos(nB) + sin(n Z( o (cosh( o) cos(nB) n
=2
s(

n=1
—cos(nB) cos(B) n* — sin(nP) sin(B) n — cosh( ) cos(nP))
-y (sin(nP) cosh(o) n® — sin(nB) cos(B) n* + cos(nB) sin(B) n

— sin(nB) cosh(a) ) -sinh(at) cos(n ) Oy — Sin(nB) v sinh(oc)) :
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Deste modo, podemos comparar as equagoes (1) e (1) termo a termo:
(N

=S —ﬁ-(cosh(Z-(x) — 2-cosh(a)-cos(B) + cos(2-B)) — B-sinh(a) (cosh(a)

020 02
— cos( i S,-cos(n-B) +s,-sin(n-B)) +n§(
(cosh(@) ~cos(B)) cos(n-B) + n-sin(B) sin(n-B) ) + =+, - (#2cos(B) sin(-B)
- (n* = 1) -cosh(a) -sin(n-B) -n-sin(P) -cos(n-B) ) — 9, ~-sinh(cr)-cos(n-B)

—y, . -sinh(o) -sin(n-B)j :

l-(cosh(oz) -cos(n-B) -n*

)
0, =)=~ (K-cosh(2:a) + B-sinh(2:a)) + (K-cosh(cr) + B-sinh(cr) ) cos(B)
- g-cos(lﬁ) + Z(Sncos(nﬁ) + sin(n Z( 9, (cosh( ) cos(np) n’
n=1 =2
— cos(nP) cos(B) n* — sin(nB) sin(B) n — cosh( ) cos(nP))

-y (sin(nB) cosh(c) n? — sin(nB) cos(B) n* + cos(nB) sin(B) n
—sin(nB) cosh(a) ) -sinh( ) cos(n ) B — sin(n ) Vo sinh(a)) :

Nota-se que ambas sdo formulas com o formato:

o = termo + termo soma 1 + termo soma 2
o _ _ _ _

Assim:

(i) termos fora dos somatdrios

termo, = S0—§~(cosh(2-0c) —2-cosh(a)-cos(B) + cos(2-B)) — B-sinh(a) (cosh(a)

—cos(B)) :

termoy; = S, — % (K-cosh(2-0) + B-sinh(2-a.)) + (K-cosh(o) + B-sinh(c))-cos(B)

- g-cos(Z-B) :

termo, — termoy,
—% K (cosh(20) —2cosh(ca) cos(B) + cos(2B)) — Bsinh(a) (cosh(c) — cos(B))
+ % Kcosh(2a) + % Bsinh(2a) — (K cosh(a) + Bsinh(o)) cos(B)
+ % Kcos(2B)
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simplificar

—% B (2 cos(P) sinh(o) + 2sinh( o) (cosh(a) — cos(B)) — sinh(2))

expandir

-Bcos(B) sinh(a) — Bsinh(a)(cosh(o) — cos(B)) + Bsinh( o) cosh( o)

Mas como
2 cos(P) sinh(a) + 2sinh( o) -cosh(a) — cos(B)-2-sinh( o) -sinh(2 o)
2sinh( o) cosh(o) — sinh(2 o)

expandir

0
Temos que o valor obtido por termo_|I - termo_I1 € igual a zero.

(ii) termo somatorio n=1...infinito
termo_soma_1I,:= S -cos(n-B) +s -sin(n-B) :
termo_soma_1 =S cos(n B) + sin(nP) s,

Sé&o iguais.

(iii) termos somatorio n=2...infinito

termo_soma_2, = ( ¢ (cosh(et) -cos(n-B) ~n*-(cosh( o) ~cos(B) ) -cos(n-B) + n-sin(p)

sin(n-B)) + %'l// -(n?-cos(B) -sin(n-B) - (n* — 1) -cosh(ct) -sin(n-B) -n-sin(B)

n

-cos(n-B)) — Oy Sin (1) -cos(n-B) — l//h.,ma”~sinh(oc)-sin(n-B)) :

termo_soma_2,, = (—d) (cosh(ct) cos(nB) n* — cos(nB) cos(B) n* — sin(nB) sin(B) n

- ¥

cos(n ))—I//n (sin(nB) cosh(o) n* — sin(n ) cos(B) n*

— cosh(a) ¢
+ COS(” B) Sin(B) n—= Sin(n B) COSh( OL) ) —sinh(oc) COS(I’! B) q)linh(m
- sin(n B) Viinhan Sinh( OC) ) :
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termo_soma_2, — termo_soma_2,

9, (cosh(a) cos(nB) —n (cosh(ct) — cos(B)) cos(nB) + nsin(P) sin(np))
+—w (n* cos(B) sin(nB) — (n* — 1) cosh(a) sin(nB) — nsin(B) cos(nB))

nB) n* — cos(nB) cos(B) n* — nsin(B) sin(n B)

) + v, (sin(nB) cosh(a) n* — n” cos(B) sin(n )

— sin(n ) cosh(a))

)
+9 (cosh( ) cos(
— cosh(a) cos(nB) ) +
+ nsin(B) cos(nB)

simplificar

% v, (sin(nB) cosh(c) n* — n* cos(B) sin(nB) + nsin(B) cos(nB) — sin(nB) cosh(c))

atribuir a um nome

ERRO

Ou seja, a equacgéo (31) difere da equacdo (20) por este fator "ERRO" acima, em (iii).
Acredita-se que o erro esteja na equacéo (20), em que um fator 1/2 foi escrito a mais.
Suspeita-se pela falta de paralelismo com a funcdo de sigma_beta. Além disso, as
deducdes das formulas seguintes foram baseadas na equacao (31) que, tomada como
correta, foi aplicada na equacédo (35) levando a toda a deducdo para as condigdes de
contorno. Ou seja, caso faltasse ser multiplicado o fator 1/2 na equacdo (31), este

teria sido notado nas férmulas conseguintes, o que nédo foi o caso.

OBS: Deducéo para o segundo somatorio:
Seu termo interno é:

217-(((71—2) (n— l)nq)n_I—ZCosh(oc) (n—1)n(n+ 1)(;)” +nn+1)(n+2)0
— 2sinh( o) nq)lm/m) cos(npB) + ((n =2)(n=Uny  —=2(n—=1)n(n

+ 1)y cosh(a) +n(n+1) (n+2) v, ., —2n y/ﬁnhansinh((x)) sin(nB))

n+1

simplificar
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-cosh(a) cos(nB) n ¢ + % cos(nB) n ¢, ., t % cos(nP) n ¢+ cosh(a) cos(nB) ¢

— sinh(a) cos(nB) Binam T % cos(nB) neg ., - %cos(nﬁ) ng + cos(nP) ¢ .

+ cos(nB) ¢~ sin(n ) cosh( ) n v + sin(nB) cosh(o) v

n

. . 1 . 1 .
—sin(n ) Ve sinh( ) + > sin(n ) n v, T > sin(np) n v,

3 . 3 . . .
+ 7s1n(n[3) n, Ty sin(nB) ny  +sin(nB)y  +sin(nB)y

Termos relacionado a phi_n (n, n-1, n+1):

-cosh( ) cos(nB) n ¢ + % cos(nB) n ¢, ., T % cos(nB) n ¢+ cosh(o) cos(nP) ¢

n

+ % cos(nB) ne ., = %cos(nﬁ) ng + cos(n ) ¢, ., T cos(nB) o,

simplificar

(70,0, eosh(0) + (50, =50, )+ (50,50, )n—0,,

~6,.,) cos(np)

Que é:

_ B)-[o-G2=1) (-L,2_3.,_ (-L.,2
#n; cos(n-B) [(pn (n?—1) cosh( o) +¢n+1( o S 1) +¢ _, ( >N

)

Que pode ser aberto em trés somatorios

oo

#Z — cos(n-B) -q)n-(n2 — 1) -cosh( )

L2 1)—>comN=n+ 1— z —cos((N—1)-B)¢
2 2 N=2 N

(-] Y= 3 - Y
N=2 N=1 N=1
#—»temos,voltandopara"n"—>Z —cos((n — 1)-[5)(1)”-[—%-(11— 1)2—%'(1’1— 1)—1]
n=2

= 2 o= 1 B)g, (=T =1 =,

n

Analogamente:
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e}

#z,l—cos(n-B)d)n_I-( é % 1)—>comN=n—1—> Zo—cos ((N+1)B)o,

o 2 0
-(—i-(N+1)2+%-(N+1)-1)—» D=+

2

#— temos, voltando para "n" — Z —cos((n+1)-B)o -

n
n=0

- Zl — cos((n + 1)-B)¢n'(—%-(n+ 1)

()
+
N |
N
_l’_
P
=
|
—
N—
+
=

Portanto, juntando as trés somatorias...

Obs:
2 1 3
—cos(n~[3)-¢n-(n —l)-cosh(oc) —cos((n—l)-B)q)n-(—?-(n—l) —?-(n—l)—l)
—cos((n+l)-B)(pn-[—%-(n—i-1)2+%-(n+1)—1)

expandir

~cosh(at) cos(n B) n? ¢+ cosh(a) cos(nB) ¢ + ¢ cos(np) cos(B) n
+ ¢ sin(nB) sin(B) »

simp;ificar
-0, (cosh(at) cos(nP) " — cos(n ) cos(B) n — sin(n ) sin(B) n — cosh(a) cos(np))

...obtemos:

#z ( ; (cosh( o) cos(nB) " — cos(nB) cos(B) " — sin(nB) sin(B) »
— cosh(o) cos(nB))) 5

Analogamente:

Termos relacionados a psi_n (n, n-1, n+1):

— sin(nB) cosh(a) n v + sin(nB) cosh( ) v, + i sin(np) " V.
+ % sin(np) n* v+ % sin(nB)ny ., — ; sin(nB) ny, _ +sin(nB)y
+sin(nB)-y

simplificar
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1.
Y sin(n ) <2cosh(oc) n v, —n’ V.o —n’ v, — 2 cosh( o) vy, —3ny , +3ny

_2Wn+1_2‘/’-1)

n

Que pode ser aberto em trés somatorios

#z — —-sin( 1//}1-(2 cosh() n — 2cosh(0c))

n=1

#Z——sm l//]1+1-(—n2—3n—2)—>comN:n+1 z —% sin( (N —1)-B)
n=1 N=2

(V=1 =3 1) 2) - D = Y -

N=2 N=1 N=

# — temos, voltando para"n Z % n—l)-B)-u/-(—(n—1)2—3-(n—1)—2)

n

- > —% sin((n—1)-B) -y -(~(n—1)> =3-(n—1)-2) — 0

N=1

Analogamente:

#z — —-sin(n-B)- v, (—n2+3n—2)—>c0mN:n—1—>Z —%-sin((N+1)-B)

n=1 N=0

0 0 0
(V1P +3(N+1) —2) - S>>+ >

# — temos, voltando para"n" Z —% i )'B)~WN-(—(N+1)2+3-(N+1)
)=> — %si 1)-[3)-1,/’1-(—(n+1)2+3-(n+1)—2)+0
n=1

Portanto, juntando as trés somatorias...

#Z - %'sin(n-ﬁ)-(l//n-(Zcosh(oc) n* —2cosh(a)) + l[/n_['( —n* +3n—2) + v,
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Obs:

- %'sin(n'ﬁ) -I//H~(2c0sh(oc) n* —2cosh(a)) — %'sin((n —1)-B) -y/’l-(—(n —1)?

(n—1)-2) —%-sin((n-!— 1)-B)y - (-(n+1)>+3(n+1) —2)

expandir

-sin(nB) cosh( o) n v + sin(nB) cosh( o) vty sin(nB) cos(B) n
-V, cos(nB) sin(B) n

simplificar

-y, (sin(nB) cosh(c) n* — sin(nB) cos(B) n* + cos(nB) sin(B) n — sin(n B) cosh(c))

...obtemos:

2 ( s1n B) cosh(a) n — sin(nB) cos(B) n + cos(np) sin(B) n
—sm( B) cosh(o )))

Assim, teremos que:

#Z (( (n—2) (n—l)n¢)n_1—200sh(0c) (n—l)n(n—l—l)d)n+n(n+l) (n

—|— 2) o . — 2sinh( o) n(l)lmlmn) cos(npB) + ((n =2)(n—=1ny ,—2(n—1)n(n

+y, cosh((x) tnn+1)(n+2)y , —2n w/inhansinh(a)) sin(nB)) -

#——0, + Z ( o cosh ) cos(n ) n — cos(nB) cos(B) n — sin(nB) sin(B) n

n=2

— cosh(a) cos(nB)) -y v, (sin(n B) cosh(a) n — sin(nB) cos(PB) n
+ cos(nB) sin(B) n — sin(n B) cosh(o) ) -sinh( o) cos(nB) R
o Sin(n ) ll/lmhan (O())

-3
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7.8 Anexo 8 — Deducéo das formulas dasegs.(31)a(35)

[ numeracéo de formulas conforme Radi (2011) ]

(37) € (38)--—-
(31)
4o =S, + 0, — 1 -(K-cosh(2-) + B-sinh(2-)) + (K-cosh(cr) + B-sinh(ct) ) -cos(P)
S .
- 7 cos(2:B) + 22— (( _,—2-cosh(a)-@ + @  —2sinh(a) @, +2n
-S,)-cos(n-B) + (¥, _, —2-¥ -cosh(a) + ¥ —2:%¥, -sinh(a) +2-n'sn)'sin(n
B))

(32) (corrigida tirando o n que multiplicava o T_n):

1 | . |~ 36
Tﬁ _[ Ty 2 l//lmhal (K'Smh(a) +B'COSh(a))'Sm(B) + 2 Sln 2 B 7 n; ( ( )
_(I)EI? +2- COSh( ) En (I)EI?-/-I + 2'7"”)‘Sin(n-[3) + (']UEn 1 -2 COSh(OC) lP En
+ LPEnJrI +2 t”) COS( B)) :

(36) para alpha=alpha_1 e alpha=alpha 2:

para alpha=alpha_1 e alpha=alpha_2:
#Ga:—p(ot)

#Tﬁa: 0:

Com

(27)

S, = e_|a|-(cr°o”-cosh((x) + ng_,-sinh(|(x|)) :

=P a2l
ty=-7 , :

Os termos com cos e sin n*beta devem desaparecer. Assim, pegando apenas 0S
termos constantes, para n=0:
de (31):

#—pla) =S, +¢,— 1 (K-cosh(2-ct) +B-sinh(2.a))—>e‘|°‘|.(g°°

o
22

”-cosh(oc) +o

ssinh(Jof) ) + 6, - 7~(K'cosh(2~(x) + B-sinh(2-0)) —

#o, = %-(K-cosh(}oc) + B-sinh(2-(x))—e_|a|-(aw

—p(a)

Que é a equacdo (37)
E, de (32)

#O=1t,+ —

-eosh(a) + 0, -sinh(]o]) )

ot o 2
2 l///m/w] l,/lfn/w/ =2 Z‘0_ 2T 12 ©

Nota-se que foi escrito Psi e ndo psi no paper. Erro de digitacao.
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Requere "sumir" com os termos que contenham sin e cos n*beta:
de (31):
Cancelando os termos multiplicativos de cos n*beta:

#0=(K-cosh(o) + B-sinh(a))-cos(B) — 7 cos(2:B) + ZL

P (( ', — 2-cosh(o)

@, + @, —2sinh(a) @, +2:n-5,)-cos(n-B))

Obs: # 6,, (vale 1quandon= A;emtodos os outros, valezero)

#Z > [  _, —2-cosh(a) @ +@  —2sinh(a) @, + 205, +2:n(K-cosh(a)

+ B-sinh(a) )-8, — 2'n2'K 3, j -cos(n-B) =0

Mas como o delta_n1 sé existira em n=1, e delta_n2 s6 em n=2, podemos observar o
interior do somatorio:

#o _ —2-cosh(e) @ + @  —2sinh(a) @, 4215, +2-(K-cosh(a) + B
sinh(a) )-8 —2-K-§

Que € a equacéo (39).

Analogamente, de (31), sumir com sin n*beta:
#Ww, - 2-¥ -cosh(a) + ¥, —2-', -sinh(a) + Z-n-sn) sin(neB) =0-w  —2:¥

-cosh(e) + ¥ —2-%¥, -sinh(o) + 215, =0

Que é a (40).

Analogamente, de (32), sumir com sin n*beta:

# = (Ksinh(c) + B-cosh(00)) sin(B) + 5 sin(2:B) + 3 X0 (-8, _, +2-cosh(or)
n=1
Py ™ Prass t 2’Tn) 'Sin(”'ﬁ)) =0—

e

RS [(—@En*l +2-cosh(a) @, — D, +2:T,) = 2-(K-sinh(0r) + B-cosh(cr))
n=1

2-B

8 S 8 jsm(n-B):O

Podemos observar o interior do somatério:

#—@, , +2cosh(a) @, —@  +2:T —2:(K-sinh(a) +B-cosh(a))-5  + B35,

=0
Que é a férmula (41)
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Analogamente, de (32), sumir com cos n*beta:
#%¥,  —2cosh(a)-¥, +W¥, +21=0

Que é a (42).

Fazendo a seguinte operacdo com a equacéo (41):

2]

#Z (an)-e" 1= D ((—@,, _, + 2cosh(a)- @, — @, +2-7, —2:(K-sinh(0)
n=1 n=1

+ B-cosh(0t)) 5 | +B.5’12),e-n-|0¢|) —0—

Retirando os termos de n=1 e n=2 (com os deltas):

#Z (( —®,,_, +2-cosh(a) @, — <DE”+1) -e_”'lal) —2-(K-sinh(a) + B-cosh(c))

n=1
e_|a| +B-e_2'|a| + Zz-Tn-e'”'|°‘| =0
n=1
Utilizando a equacéo (28):
(28)
S, = 2'(60022 — Goo”)-gn-sinh(|oc|) :

T, = 2-(00022 - Gwll)-gn-sinh(oc) :

#Zl(< — @, +2cosh(a)- @, —@, ) _e-n'lal) —2:(K-sinh(a) + B-cosh(ay))
=

el 4 p.elol 4 24'(0‘0022 - Gx ) g +sinh(a) ¢ el — g
n=1

oo

#Z (<2~cosh((x) D~y — <I>En+]) ~e_”'|a|) —2-K-sinh( o) LY B-cosh(a)

n=1

Uy gl 4 4-( ) Zg -sinh( o nlof _

n=1
Obs:
B-( -2-cosh(a) oo e_z'lal) :

B.(_M.e-w . e—z~|a|]

2
B [—% (2e|a| + Ze_|a|) gl 42 |a|)
simp;ificar

-B
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Entao:

z ((2 cosh(a) @, —@, , — (I)En-/-l) 'e_"'|a|) —2-K-sinh( o) el By

'(G -0 “) Zg -sinh (o ol _ g

E, olhando apenas para o primeiro somatorio:

lof | -lod) . _ _ ) Iocl) ( n)-lof (14n)|af
n;(((e te ) ‘pEn (I)En—l (DEH_/.] - ; (D +
D — ol ) -n'lal)
Q)En Q)El’l—l © (DEn+l ©

Pode ser aberto em outras somatorias:

. n)-lo
i) D, + D
n=1
# (i) z +o, (1+n).|a|
n=1
oo oo oo oo 0
# (iii) Z -0, _]-e_".|a|—>comN:n —1— Z — Qe (Nl Z Z + Z
n=1 ! N=0 =0 N=1 N=0
HNEO - cpN-e‘(N“’""" - - q>N~e‘(N+”'|°‘| — @, —mas D, =0—
# —usando "n" — (iii)= Z @, (n+1)-]od
n=1
1) 0 © 1
# (iv) z D L€ _”||—>comN n+1—>z D€ ) _1)'|a|—>z=z—z
N=2 N=2 N=1 N=1
_ m(N=1) o] _ _ ~(N—=1)|qf
_’sz Dpye - NZZ Qe TP~
N " ) — _ n+1 |O€|
# —usando (lv)—nz CDEn + (D
Assim, somando todas 0s somatorios:
(1 —n)-|o (I 4n) o o) o . (—n+1)~|(1|)
#,;1( + @, + @, e @, e @, e + @,
=y,
Portanto,
<DE]:2-K-sinh(0L)-e_|a| +B - 4-( ) Zg -sinh( o 7-Jod
n=1
Que € a (43).
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Para m>=2, fazendo:

m—1

Z {(41)-sinh((m —n)-a)} =0

n=1
Temos:

m—1
# Z {( +2:7,—2(K-sinh(c) + B-cosh(a) )-8 , +B-§ ,-®,  +2-cosh(a) @

(I)EnH) sinh( (m — n) ~0c)}:0

Analisando por partes 0 somatorio:
(a) 1
#Z +2-7, smh((m—n)-(x)}
(28) Utilizando:
r =2 (0'0022 — O'OO”) 'gn-sinh(oc) :
Obtemos:

m—l

{( +2-2- )-gn-sinh(oc))-sinh((m — n)-oc)} =+ 4- (0'0022 — Gw”)

G
-sinh( o Z {g -sinh((m — n)- oc)}

Assim;

m—1

(@) -+ 4'(60022 — qu) -sinh (o) - ; {gn~sinh((m - n)-oc)}
(b)
" Z [(-2:(K-sinh(0t) + B-cosh(ct)) -8, + B-5, ) -sinh( (m —n)-a) } =

So havera valores para n=1 e n=2. Assim:
—2-(K-sinh(a) + B-cosh(a))-sinh((m — 1)-a) + B-sinh((m —2)-a)
-2 (K sinh(a) + Bcosh(a)) sinh((m — 1) ) + Bsinh((m —2) o)
expindir
-2 K sinh( o) sinh(om) cosh(o) + 2Ksinh(oc)2 cosh(om) — Bsinh(oum)

simplificar

-2 K sinh( o) sinh(am) cosh(o) + 2Kcosh(0t)2 cosh(oum) — Bsinh(am) — 2 K cosh(oum)

Mas

F—e®
ha = ————
sna 2

(03 -0l

e +e
hg = —————
cna 2
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e —e
shma ==
2
m-oL -m-o
[ +e
chma = ——
2

-2-K-sha-shma-cha + 2 K cha®-chma — B shma — 2 K chma

2
2K[iea+%e_aj (ieam+ie_am)—21([ ! a+%e_aj [%ea

2 2 2 2°
1 - 1 om 1 -om 1 om 1 -om 1 om
- — - = —B| =" —— —2K|—
L ](ze L j (ze L ] [ze
4 %e—(xm)
expindir
Lok 1K1 K& | B
7 B i et
eOLm e(Xm (ea> eotm
simpiiﬁcar
1 -(m—=2)a 1 om 1 -om 1 (m—2)a 1 om 1 -om
—K —— K" ——K —K ——B —B
> € > € 5 € + 5 € > e+ > €
Fazendo:
(m—2)-o -(m—2)-o
#%Ke_(m_z)“+%Ke(m_z)“—K-[ £ —;e ]—K~cosh((m—2)'0c)
m: 0oL -m-o
#‘—‘%Keam %Ke_am——K-[—e —;e j——K-cosh(m-(x)
N om 1 -om em(x_e—moc .
#— B+ —Be %" =-B:| =——=—— | =-B-sinh(m-t)
Temos:
(b) - K- (cosh((m — 2)-a) — cosh(m-at))-B-sinh(m-o)
(c)
m—1
#21 [(-@,,_, +2-cosh(a)-@, — @, )-sinh((m—n)-))
Que deve ser aberto em trés somatérios:
(i)
m—1 m—2
ng {( —@EII_I)-sinh((m —n)-(x)}—>comN=n — 1—>NZO{( —f,DEN)-sinh((m —N—1))

-@, sinh((m—m+1—1))-a)=-@_  sinh(0)=0

1
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Temos que, reescrevendo com "n'™:
m—2

20{( —(DE”)'sinh((m —n— 1))-0()}: ; {( —dbEn).sinh((m—n — 1))0()}
Assim:
m—1
(i)— ; {( —(DEH).sinh((m —n— 1)).(1)}
(ii)

#Z{(—i—Z -cosh( o E)-sinh((m—n)u)}

m—1 m

#Z {( —(DEI7+])-sinh((m—n)-oc)}—womN:n+1 Z {( ) -sinh((m — N + 1)

n=1 N=

N=2 N=1 N=m N=1
-, sinh((m—m+1)-a) = —@Em‘smh((x)
€
—CDE]-sinh((m —1+1)a) =—®Ej-sinh(m'(x)

Temos que, reescrevendo com "n":

#Z{( ) -sinh((m —n +1) }: Z{( ) -sinh((m —n + 1)-0()}—@Em~sinh(0c)

n=1

+ @, -sinh(m-a)

Assim:

m

(i) — > [(-@,,)-sinh((m —n+1)-0) }-®, -sinh(c) + @, -sinh(m-0.)
n=1

E, portanto, como (c)=(i)+(ii)+(iii), temos:

z ( smh (m—n—1)-a) + 2-cosh(c) '(DEn'sinh( (m—n)-o) — CDE”'sinh( (m—n
) + 1)'06))—(DEm sinh(ot) + @E]~sinh(m-(x)
Mas como:
—@En'sinh( (m—n—1)-a) + 2-cosh(c) '(I’En-sinh( (m—n)-o) — <DEn'sinh( (m—n-+1)
@)

@, sinh((m —n—1) o) +2cosh(a) @

- sinh((m —n) o) — @, sinh((m—n+1) a)

En

expandir
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Temos que
(c©)— —CDEm-sinh(OL) + @E]-sinh(m'oc)

Portanto, somando as trés parcelas (a)+(b)+(c), temos:

m—1
+ 4~(Goo72 - Gw”) -sinh( o) - z {gn-sinh((m —n)'(x)} + K-(cosh((m —2)-a)
- n=1

— cosh(m-a)) -B-sinh(m-o) -@, -sinh(a) + @, -sinh(m-o)

Em
E, como
como
(43)
@, = 2Ke %sinh(a) +B - 4(c%,=0",) ~n;gn-e'”'|°°|'sinh(0€) :
Temos, finalmente:
m—1
D {(41) sinh((m — n)-a) } >
n=1
m—1

+4-(0",,— 0", )sinh(0)- > {g,sinh((m —n)-0) } + K- (cosh( (m —2)-01)

- n=1

Em

) 2 :lof -sinh( )J'sinh(m-(x)ﬁ

— cosh(m-0) ) -B-sinh(m-o) — @_ -sinh(ot) + {2~K~e_|a|~sinh(0c) +8—4(c",

m—1

+ 4-((50022 - 0'00”) -sinh(at) - z {g,sinh((m —n)-0) } + K- (cosh((m — 2)-a)
n=1

— cosh(m-a)) -B-sinh(m-0) — @, -sinh(o1) +2-K-e_|a|-sinh(a)-sinh(m-(x) +B

-sinh(m-o) —4-(00022 — Goo ) -sinh(m-a) Z :lof -sinh(o) =0—

m—1

+ 4'(60022 - Goo“)-sinh( )-| -sinh(m-a) Z el 4 z,lgn-sinh((m —n)-a)
- e

+ K-(cosh((m —2)-a) — cosh(m-o)) —B-smh(m-a) @, -sinh(a) + 2-K-¢ 1
-sinh( o) -sinh(m-a) + B-sinh(m-o) =0—
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K(Ze_|a| sinh( o) sinh(om) — cosh(am) + cosh( (m —2) oc)) +4-(c7w72 - GOOH)
m—1

-sinh (o) [—smh (m-a) z el Z g, -sinh( (m — n)'(x)] — @Em-sinh((x) =0

n=1

—

Apds manipulagdo algébrica dos termos multiplicativos de K (na Obs. em breve),
temos:

sinh( ) -2-K-e_m.|a|-sinh(oc) +4- (Gwzz — Gw”) -sinh (o) {—smh (m-a) Z ¢ ol

m—1
+ Z g, -sinh((m — n)-oc)] — @, -sinh(a) =0—
n=1

m—1

2-K-e_m'|a|'sinh(oc) +4'(Gx22 — GOC”) [—smh (m-o) Z ol Z g, -sinh((m

n=1

o n) OC)] - (DEm

Que é a formula (44).
Obs.: Dedugéo do termo multiplicativo de K

Olhando apenas os termos multiplicativos de K:
2071 sinh(a) sinh(om) — cosh(om) + cosh((m —2) o)
Mas como:
— cosh(om) + cosh((m —2) )
cosh((m —2) &) — cosh(oum)
expandir
2 cosh(am) cosh( o) — 2 cosh(oum) — 2 sinh(oum) sinh(ct) cosh(o)

E, abrindo o cosh”2(alpha):
2-cosh(o-m) '(1 + sinh(oc)2> — 2-cosh(a-m) — 2 sinh(om) sinh(o) cosh(o)

2cosh(am) (1 + sinh(oc)z) — 2cosh(am) — 2sinh(om) sinh( o) cosh(a)
simplificar

2sinh(a) (cosh(om) sinh(o) — sinh( o m) cosh(a))

Temos que o termo com K fica:
K (2 e 1 sinh( o) sinh(om) + 2 sinh(o) (cosh(am) sinh(o) — sinh(om) cosh(a)) ) -
K-sinh(a) (2 e_lal-sinh(ocm) + 2-(cosh(om) sinh( o) — sinh( o m) cosh( ) ))

K sinh(a) (2 e 1 sinh(om) + 2 cosh(om) sinh(o) — 2sinh(oum) cosh(a))

Fazendo
d—e @
h = ——
sna 2
m-ol _ e-m o
h =
snma 2
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Chma . em'(l+e—ﬂ1'0L .
=
(0 -
e +e
ha == ———— :
cna 5
Aplicado em:

2 e_|(x| shma + 2 chma sha — 2 shma cha :

Que, para alpha>0

2¢ %shma + 2 chma sha — 2 shma cha
2e—a(ieam_ie—0¢m)+2[ 1 al’n+Le—UJﬂj [Lea_%e—aj_z(%e(xﬂ’l

2 2 2°¢ 2 2
1 com)(1l o, 1 -«
> e j [ > e + > e j
expindir
_ 1 e
o om om
e

Que equivale a:
2-¢"“"sinh(a) :
E, para alpha<0:
2e% shma + 2 chma sha — 2 shma cha
of 1 om 1 -am 1 oom 1 ~om)(1l o 1 -a) 1 om
Ze[ze 2e ]4—2(26 +2e )( e 26) 2(26
1 com)(1l o, 1 -«
> e j [ > e + > e j

expandir

Que equivale a:

2-¢*"-sinh(ct) :

Ou seja, temos:
K-sinh(a)-2-¢*"-sinh(a) o <0
K-sinh(o)-2-¢"*"-sinh(a) o >0

Que é 0 mesmo que:

sinh( o) Ko -sinh (o)
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7.9 Anexo 9 - Programacao para aeq.(36)

1. Considerando >0

(expl(or) +exp(-a))

(exole) -0 |

gn == exp(-n-a) -fcha — n-sha) :

gn-(exp((m —n)-0) —exp(-(m—n)-0))

cha =

sha =

E. =
Xpr P 5
Expr::%e—na(_n[%ea_%e—aj _i_%eoc_i_%e—(xj (e(m—n)oc_e—(m—n)oc)
Sm = expand(sum(Expr,n=1.m —1));
3
1 m I m® 1 n? & (&%)
Sm= oy T8 om 8 wam 8 am 4 2
o om R & o R (_1+(ea) )e(xm
N 1 i eCL +i eoceocm _i eOLm
4% 2m 4 am 4 1+(oc)2 4 K
- €

gma = subs(n=m,gn);
l o

ma=c "Ly Lo (Lo Loa
sma: 2 2 2 2

1 Auxl
Smradi = ?( L;lx + 2-exp( ‘m~0€)'cha—m'gma];
sha
1 %e(m—2)(x_%e—(m—2)a | 1
Smradi = le“_le‘“ + e_am[?ea—i-—e_aj
2 2
Lo 1em-+-—e_oc—m Ll _Llga
4 2 2
test == Sm — Smradi;
3
g Lom w1 et e 1 ()
’ 8 o am g8 oam 8 om om 4 ( o 2) om
e e e e e —1+(e ) e
+ 1 l e(X +i e(XeO(m _i eO(m
4% M 4 om 4 )2 4 o
¢ -1 +(e) c
i (m72)0L_L -(m—2)a
1 26 26 1 —ocm[l o —ocj
- — - —e¢ +—e¢
4 1o _1 2 2
2 2
+1 _am(%ea—i-%e_a—m[—e ——e_a]]
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expand( (9) )

1 (ecx)3 +L R 1 o 1 R
4 2 4 2 4 «a 8 2
(—l—i-(ea) )eam —l—l—(ea) € (iea—L] (ea>
2 2%
e
2
it ()
8 [ieoc_ 1 Jeocm
2 2%
simplify( (10))
0
--------- Ou seja, ambas as formulas sdo equivalentes!
testl7 = subs(m= 17, test);
3
o o a 17 o
festl7:= = a3?7a + 127 le7oc _% <e )2 +% - 2
€ec € (—1+(ea) )e”a —1+(ea)
1 LGISa_Le—ISa
1 “ 1 2 2 1 -170(1 o, 1 -a 17 -170
4e°‘ 4 iea_ie‘a 2e [ze—i- e)+4e (
2 2
—Sea+9e_a)
plot(testl7,0.=0..2-Pi);
4 %1077
2% 1077+
0 r . . . .
1 2 3 4 5 3
X
-2 %107 4
-4 %1075 4
-6 % 10737 4
RS UACLE

S17 := subs(m=17,8m);

Ol
G738 137 &

1 1
eocel7oc 4 e17on 4 (-l+<ea)2) e”“ 4

S17radi = subs(m= 17, Smradi);
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LCIS(X_LG-H(X
. 1 2 2 Il -170(1 o 1 -o 17 -17a o
17radi == — it et - -
S17radi 1 iea_ie‘“ +2e [Ze-l-ze) 46 (86
2 2
+9e_a)
A Y VAR
Testl7div = Sl 7radi’
Testl7div ==
3
38 137 &1 ) 1 &7 | 7
_0L170c+ 4 170c_Z 2\ 1y +Z 2_Z o
e © (—l—i—(ea))e ¢ —1+(ea) ©
iGIS(x_ie—lS(x
1 2 2 1 -170(1 o, 1 -a 17 -17a a -
— — — — - — -8 9
4 Lea_ie‘a +2e (Ze—l—ze] 1 (e—l—e)
2 2

plot( Testl7div,a.=0 ..%,y =0 ..2];

21

0514

2. Considerando a<0

(exp(a) +exp(-a))
> :

(exp() — exp(-0)) |
2

an = expln-a)-(cha + m-sha);

__n(xl(x i—oc l(x_i—oc
gn:=e [26+2e +I’l[26 Zejj

cha =

sha =

gn-(exp((m —n)-a) —exp(-(m—n)-a))
7 ;

Expr:=%ena[ ! 0(+ie_a—i-n( Lo

Expr =

Nl»—
(¢}

2°¢ 7T 2 ¢
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Sm = expand(sum(Expr,n=1.m —1));

m

1 1 me* 1 e 1 1 "
Sm ::—meaeam-l-g _§ +§eamea 2—7 7
e e ea(—l—i-(ea) )
1 « om 1 eotm i ea +i e(x
4 4 o 4 eam( - (ea)Z) 4 o
el = exp((m=2)-a) —zexp(—(m—2)'0t)) ’
L m=-2)a_ 1 -m-2)a
Auxl : > e > e

gma = subs(n=m,gn);
o

+

0=
(DI

Q
_l’_
3
N\
0| —
(@]

|

|P—‘
(Dl
2
N—

gma =" (i e
2

Smradi = L [ Aux] + 2-exp(m-a.) -cha — m'gma);
4 sha
1 %e(m—Z)(x_%e—(m—Z)(x 1 | |
S d.::__ 4 om 1 (04 1 -0
mradi 1 Le“_ie‘“ 26 2e+2e
2 2
—I—imeam 1e(x—i-—et +m —ea—le_a
4 2 2 2 2
test == Sm — Smradi;
om om 2 om
test:=—meaeam+% mea —% ¢ am —l—%eameOC 2 l ¢ >
¢ € ea(—1+(ea> )
om ol o
_%eaeam_%ea +% - 2 +% Zm
€ eam(—l+<ea) )
Le(m—Z)oc_ie—(m—Z)oc
1 2 2 1 am( 1 « 1 -a 1 om( 1 «
+4 T o 1 . +ze[e+ ej me(e
—e —?e

expand( (22))

1 1
Pelar@)  f Lee@)en e

a

simplify( (23))
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----Ou seja, ambas as formulas sdo equivalentes!!
testl7 = subs(m= 17, test);

17 17 o o
testl7 =38 el — 137 - I . % ¢ .
€ ea(—l—i-(ea) ) e”a(—l—l-(ea) )
iCIS(x_Le—ISa
1 & 1 2 2 I 17¢(1 o, 1 -a 17 170 o
+ — + — + = + = - — 9
4 J70 4 1a 1 a 2 ( ) ) 4 (
2 2
—Se_a)
plot(testl7,0.=-2-Pi..0);
6. %1057 4
4. %1057 4
2% 10757 4
6 5 4 3 2 1 0
-2.%x10°97 4
-4, %107 1
-6, %1097 4

S17 = subs(m =17, Sm);

s17=3g e 131 701 U L1 e
4 ¢ 4 ea(—l+(eu)2) 4 e”a(—l—i-(eu)z)
T
(§]

S17radi = subs(m= 17, Smradi);
1 150 1 o5

.12 2 1 el o, 1 -« 17 170(4 .0
S17radi 4 iea_ie‘u 2e (26 +2e )4——4 e (9e
2 2
—86_a)
S17
Testl 7div = ——"—
estl7div = o i’
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Testl7div :=

plot( Test17div,00=-2-Pi..0,y=0.2);

0.5 1

130



7.10 Anexo 10 - Deducéo das eqs.(37),(38)e(39)

[ numeracéo de formulas conforme Radi (2011) ]

T S——
Usando:
(31)
g, = e_"'|a|-(cosh(0c) — n-sinh(|o]) ) :
Temos:
i o cosh(o) — sinh(jo])) 19— cosh(o)
-

g,e — 2
i1 (-14&M)

ot o=
cha = 7 : o sha == 2
1. Para alpha>=0

5. e—oceZcx ieoc__e—oc
(cha — sha) ¢ * — cha 2
0\ 2 — 2
(149 (-1+&9)

expindir
1 e B |
2 2y2 212

(—l—i-(ea)) 2(—1+(ea))ea

o -
1l e —e
simplificar 2 (_1 +ez (x)2
; o 2.0

4, sinh( 1) N 1 2 1 1 ,_¢

(—1+e2'°‘)2 2.3“.(_14_62'0‘) 2.e% 4.2 sinh( o) 4-sinh( o)

2. Para alpha<0

-2 et Lo Lo
(cha + sha)-¢ ~* — cha 2 2
“2.q)\2 — 9o\ 2
(1429 (-1 4629
expandir

3o 5o
1 e " —e
simplificar 2 ( |+ e2 0()2
2.0 o 2 2-0 -2-(-a)
N 2-e 1 '<1 e ) S 1 e

1. . Le 1 -
2 2 (2o—1) 1 (j—g) 2 2 (-1)-sinh(a)  4-sinh(-a)
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Assim:
e—2~(—ot)
4-sinh( -ar)

-2-0
€

4-sinh( o)
Portanto:
_2,|(x|
&
4-sinh(|of)
Que é a formula (46).

(47)--------
De (43):
#, = 2-K-¢ % -sinh(0) +B—4-(c",, = 0" ) -n;gn~e_"’|°‘|.sinh((1)
Com o uso de (46):
o2 o]
nlof
# =
Zgn © 4 s1nh(|0c|)
-lof . o 0 e—2-|0L| .
@5122-K-e -s1nh((x) +B—4'(G 22—6 ”)-m-smh(a)
o @\ 2o
o, —0, )e sinh( )
@ =2k sinh(a) + B — (%2 1.1)
El sinh(|o])
Mas como
#sinh(|o]) = sign( ) -sinh( o)
Temos:
— ~lof . © ©\ -2]0f
#O, =2Ke sinh( ) +B—szgn(oc)‘(0'22—6“)e

Nota-se que ele esqueceu do sinal de negativo apos o B!

A férmula (48) é obtida aplicando as formulas (45) e (46) em (44):
sinh((m — 2)-a)

Formula, s = %'sign(a)'( sinh(c:) + 2'€_m.|(x|'cosh(oc) — m'gm] :
L2ld
Formula46 = m :
(44):
@*m(a) = Z-K-e_m'kx' -sinh( o) + 4- (Gw22 — Gw”) '(Farmula45 — sinh(m-a.) 'Formula46)
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sinh((m —2) o) L1

1 —m|0L|
— h( o
4 sinh( o) ¢ cosh(0!)

db;(oc) —2Ke "l sinh(0) + 4 (0'20; — O'IOT) [

1 | sinh(mo) e o
— Mg~ T
4 "mo 4 sinh( o)

Comparando com a Equacéo proposta por Radi, tem-se que o fator que diferencia
ambas as formulas é:

o o 1 sinh((m—2)a) 1 -mldf 1 sinh(mo) e’ o
4-loc ,,—0O — + = h(a) — = :
( 22 11)[ 4 sinh( o) 2 ° cosh(at) 4 sinh( )
Ou seja, o seguinte fator deve ser nulo:

1 sinh((m—2) a) n 1 o cosh(ct) — 1 sinh(ma) o 2o
4 sinh( o) 2 4 sinh( o)
: B - -2]of
1 smh(.(m 2) ) 4Ll cosh(a) — 1 smh('m(x) e
4 sinh( o) 4 sinh( o)

simplificar

| 2e cosh(a) sinh( o) — sinh(mar) 2l 4 sinh((m —2) o)

4 sinh( o)

Isto é, deve ser nulo:
207"l cosh( o) sinh( o) — sinh(m o) e 2l sinh((m —2) o) :

Abrindo os senos/cossenos hiperbdlicos:

2.0 -2-0
—e

m-o -m-o (m—2)-a -(m—=2)-a
e-m|0€|' < —¢ e —e

_ 2o €
2 ¢ 2 + 2

e—m\oc| ie2a_ie—2a _e—2|oc| iemoc_ie—moc 4
2 2 2 2

Considerando Alpha positivo:

1. _
2

m ez-u_e—Z'oc 2 emloc_e—mloc e(m—2)~oc -(m—2)-a
T2 B 2 * 2
—moc(ieZ(x 1 e—ZOL) e—ZOL(l mo. 1 —mot) _I_Le(m—2)0c_i -(m—2)a
2 2 2 2 2
expandir
0
Considerando Alpha negativo:
2.0 -2-0 m-o, -m-o (m—2)-a -(m—=2)-o
em-(x.e — € _ezu.e — € + S — ¢
2 2 2
ma[leZ(x le—2a] ZOL[LemOL_ 1 —moc)+ 1 (m—2)0c_ie—(m—2)(x
2 2 2 2 2 2
expandir
0

Conclui-se que ambas as formulas sdo equivalentes.

(m—2) o ie-(m—Z)oc
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7.11 Anexo 11 — Deducéo daseqs.(40)a(44)

[ numeracéo de formulas conforme Radi (2011) ]

(49) ----------- (deducéo parcial)

A partir de:

(39)

@, —2:® -cosh(a) + @  —2:@_-sinh(o) +2:(K-cosh(a) + B-sinh(a))-§ ,+ 2+

'Sn =0:

m>=2...
m—1

42, (0, , —2:® cosh(c) + @, —2:@, sinh(a) + 2:(K-cosh(ct) + Bsinh(ct))
n=1

0, 2'”'517) sinh((m —n)-a) =0—

Pode ser quebrado em trés somatorios:

Q)

#n; (®, , —2:® cosh(a) + @ , —2:@, -sinh(a))-sinh((m —n)-a)

Que pode ser aberta em quatro somatorios:

(@)
m—1
#—2-cosh(o Z @ -sinh((m —n)-a)
(b)
m—1 m m
# z o) _H~sinh((m —n)-0) >comN=n+1— z CDN~sinh((m —(N—=1))a)—
n=1 " N=2 N=2
m—1 m
SSIEE ) o
N=1 N=m N=]
m—1
#‘—>‘N22(DN-sinh((m —(N—=1))- NZI D, ssinh((m+1—N)-a) + fbm-sinh(oc)
(©)
m—1 m—2 -
#n; 115”_1~sinh((m —n)-a) >comN=n — l—>NzOCD -sinh((m — (N + 1) Z
m—1 0 m-1
SIS S
N=1 N=0 N=m-—1
m—2 m—1
# - th ssinh((m — (N+1))-a Zd) ssinh((m — 1 —N)-o)
N=0 N=1
(d)
m—1
#—2-sinh(a Z @, -sinh((m —n)-cc) —usando (48)
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m—1
e}

#— —2-sinh(o)- Z (2-K-e_n'|a|'sinh((x) - (Gw22 -0 ”)-n-gn'sign(oc))-sinh((m
n=1

—n)~0c)—>

m—1

#—>—4-K-sinh(0c)2~ Z e_"'|a|-sinh((m—n)-(x) +2~sign((x)-sinh(0c)-(6

n=1

(o] (o]
20 11)

m—1

: Z n-g -sinh((m —n)-a)

n=1
Portanto, somando-se 0s quatro termos:
m—1

#(a) — -2-cosh(a) Z (Dn'sinh( (m —n)-a)
n=1

m—1

#(b)— @ -sinh((m +1—n)-a) + @ -sinh(ot)
n=1
m—1

#(c)— >, @ sinh((m — 1 — n)-c)
n=1

m—1

#(d) - -4-K-sinh(0))+ 2, " -sinh((m — n) o) +2-sign(e) sinh(t) - (o

n=1

2]

22
m—1

- Gmll)'n; n'gn-sinh((m —n)-o)

Mas como (a) + parte_(b) + (c) =
~® -sinh((m —n)-a)-2- cosh(a) + @ -sinh((m +1 —n)-0) + @ -sinh((m—1—n) )

2@ sinh((m —n) o) cosh(a) + @ sinh(o(m —n+1)) + @ sinh(o(m —n—1))

expandir

0
Temos que (a)+(b)+(c)+(d) =
m—1
#—»(Dm.sinh(oc) — 4.K.sinh((x)2, Z e'"‘|0‘|-sinh( (m —n) .a) + 2~sign((x) -sinh(oc)
n=1
m—1
'(Gw22 n cy0011). Zl n'g”'sinh((m —n)-o)

(i)
m—1
# Z (2‘(K'cosh(oc) —i—B'sinh(oc))-(Snz)'sinh((m —n)-a) >2-(K-cosh(o) + B-sinh(a))
n=1
-sinh( (m —2)-a)
#—2-K-cosh(o) -sinh( (m —2)-a) + 2-B-sinh(a) -sinh( (m —2)-a)

(i)

m—1 m—1

# z (2‘n'Sn)-sinh((m — n)-o) >usando (28) — z (2-n‘2~(6w22 — Goo“)'gn
n=1 n=1

-sinh(|0c|)) -sinh( (m —n)-o) =
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m—1

#—4-sign(a) -sinh(a) - (Gwzz - Gw”)' Z n-g -sinh((m —n)-o)

n=1
Fazendo (i)+(ii)+(iii):
m—1
#—»(Dm.sinh((x) - 4-K.sinh(q)2, z e'”'|a|-sinh( (m —n)-a) + 6-sign( o) -sinh(or)
n=1

m—1

-((70022 - Gw”)' z n-gn-sinh((m —n)-0) 4+ 2-K-cosh(a) -sinh((m —2)-a) +2-B
n=1

-sinh( ) -sinh((m —2)-01) =0—
m—1 m—1

#H(Dm:“.K'Sinh(O(‘)' Z e_n'|0‘|'5inh( (m —n)'(x)-6'sign((x)'(0w2_7 o cFOOI]). z n-g,

n=1 n=1

-sinh((m —n)-a) — Msinh( (m —2)-0) —2-B-sinh((m —2)-a) —
sinh( o)
E possivel colocar o sign(alpha) dentro do somatorio colocando o médulo em alpha
m—1 m—1
aad =4-K-sinh( o z e led -sinh( ( —n)-(x)—6'(ooo22—6w”)'z ng,
n=1 n=1
2-K-cosh(a)

-sinh( (m—n) '|05|) - Sinh((X)

ssinh((m —2)-a) — 2-B-sinh((m —2)-a) —>

(...) Deducéo a ser continuada.

) (deducdo parcial)
A partir de:
(42)
#y _ —2-cosh(a) ¥, +W¥,  +21,=0
m—1
#nz‘,l ( — 2-cosh( o) R +2-tﬂ)-sinh((m —n)-a) =0—com (29)
m—1
_’n; (,,_, —2-cosh(a)-%, +¥, . +2:(47 g, sinh(|o]) ) )-sinh((m — n)
o) =0—
m—1
#— Z( ', — 2-cosh(a) -7, +‘PEl_H+2-(4~T°o12-g”-sinh(|oc|)))-sinh((m—n)
‘o) =0—
Pode ser aberto em quatro somatorios:
(i)
m—1 m—2 m—2
# Z ¥, ssinh((m—n)-a) >comN=n—1- Z ¥, ssinh((m — (N +1))-0) >
n=1 " N=0 N=0
m—1 m—1
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m—1

#—>Z smh —(N+1))- Z‘P -sinh((m —N —1)-a)
N=1
(“)

" Z — 2-cosh(cr) -, -sinh((m — n) )

n=1
(iii)
m—1 m m
# Z l1"Elﬁl_1-sinh((m —n)-0) >comN=n+1— Z l1"EN-sir1h((m —(N—1))a)—
n=1 N=2 N=2
m—1 m
SO S o
N=1 N=1 N=m
m m—1
#‘—"NZZ‘PEN'SiHh((m — (N z ¥, ssinh((m — N+ 1)-a) + ¥, sinh(m-a)
— ¥, -sinh(a)
(iv)
m—1

o0 . . o . 1 .
#8-T [2-s1nh(|(x|) : n; gﬂ~smh( (m — n)-0.) >usando (45) —>8-1 ]2'smh(|(x|) T -sign( o)

( sinh((m —2)-a
sinh( o)

) +2-e_m‘|a|-cosh(ot) —m-gmj—>

sinh((m —2)-o
sinh( )

#—2- ‘Cwu-sinh(oc) [ ) + 2-e_m'|a|-cosh( ) —m- ém]

m—1
#(i)— >, ¥, sinh((m—n—1)-0)
n=1

m—1

#(it) > z —2-cosh(a) ¥, -sinh((m —n)-a)

oy’ En

m—1
#(iii) Z Y. smh((m —n+1)-0)+ lI’El'sinh(mnc) - l1"15‘”1'sinh(0c)
#(iv) >2- 1 ]Z'Sinh(oc)- Smh(si(nh(_oj)a) +2'e_m'|a|-cosh( ) —m- cvmj

Mas como (i) + (ii) + parte_(iii) =

l1"En-sinh( (m—n—1)-a)— 2-cosh((x)-'1”En-sinh( (m—n)-o) + l1"En-sinh( (m—n+1)-a)

¥, sinh((m —n—1) &) —2cosh(a) ¥, sinh((m —n) o) + ¥, sinh((m—n+1)0)

En
expindir
0
Temos que a soma é:
. . o . inh —2)- -m-
#—W,_ -sinh(m-a) — ¥, -sinh(a) +2- 7 ,-sinh(o)- sinh((m —2)-a) 427l

sinh( o)

-cosh(at) —m-g | =0-—com(38) —
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sinh((m —2)-a)

oo -2 . . 2 .
#—2-T e |O°|'smh(m-oc) — ¥, -sinh(a) +2- 7 Iz-smh((x)-[ <inh (o) +2
.e_m-|oc|'COSh(OC) — m.gm] =0—com (38) —
by g ol sin(me) o e fsinh((m = 2)a) o ool o)
Em 12 SlIlh(OC) 12 SlIlh(OL)
- m.g’ﬂ] -
b —9.0% 7-e_2'|a|- sm.h(m-(x) P smh(Fm—Z)-(x) +2'e_m'|a|-cosh((x)
Em 12 Sll’lh((X) 12 Sll’lh((X)
- m.gln] -
#oW =2-Too -e_2'|0‘|.—sn%h(m.(x) +2- ‘L'w . Smh( (m — 2).(1) +2- ‘L'oo '2'e—m~|oc|
Em 12 smh(oc) 12 smh(oc) 2

-cosh(a) —2- Too]g'm'gm

(...) Deducéo a ser continuada.

1) Considerando o>0

(exp(a) +exp(-a))
5 ;

cha ==

(exp(a) —exp(-a)) |
> ;

sha =

gn = exp(-n-a)-(cha — n-sha);
gn:=e_”a(—n[iea—ie_aj—I—%ea—i-%e_a)
n-gn-(exp((m —n)-o) —exp(-(m—n)-a))
2 b
D S 0 S S N 1
Expr.2ne [n[2e ej~|—2e+2e

Expr =

2
Sm = expand(sum(Expr,n=1.m — 1));
1

o o 3 3
R T it i TR
e(x m e(x, eOLm e(x,m e(x e(x m
Smradi = im(m2 — 1)~exp( -m-a.) -sha;

6
Smradi = % m(m® —1)e*" [% et — — e_aJ

test == Sm — Smradi;
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test = - —— me’ L n +
’ 12 Qom 12 o oam 12 &m 12 &M 6

simplify( (10))

0
Ou seja, ambas as formulas sdo equivalentes.
testl7 = subs(m =17, test);

o
test17.= 08¢ 408 —816e“7°‘[ie‘*—ie'“J
17 o o 17 a 2
e e e
plot(test]7,0c=0..2-Pi);
1. =109
EI T 1 T 1 1 1 1 1
= x ir m Jm 3m Jm im
42 4 4 2 4
o
-1.D<1EI'9""'
-2 = 10797
S17 := subs(m= 17, Sm);
o
§17 = 408~ 408
17 o 17a
e e e

S17radi *= subs(m =17, Smradi);
. 171l o 1 -«
17radi =816 —e — —
S17radi e ( > e 5 e )

. SI17
Testl7div = —S]7radi ;
408¢e” 408
e170( eocel7oc
Testl7div .=
estl7div 216 6-170L(L60<_Le-0€)
2 2

plot( Testl7div,0.=0 ..%,y =0 ..2);
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1.5

05

(%}
=

T T T Sw I T T
% & 16 4 16 & 18 1T
o
2) Considerando a<0
o Lexple) + exp(-0)) |
2
cha=—¢e*+—¢ ¢
o Lexp(0) —exp(-a))
2
o 1 -a
sha=—e ——e

an =e”a£ (%e —%e_aj+%ea+%e_aj
Expr = n-gn-(exp(—(m—n)-oc)z—exp( + (m—n)-a)) :
1 no 1 o 1 -o 1 o 1 -« -(m—n) o (m—n) o
Expr = — O 2
xpr 2ne [n(ze zej-i-z +2e)(e )
Sm = expand(sum(Expr,n=1.m — 1));
.7L om o L meam L om o 3 L eocm :
Sm = B me’ e TR 12e e m + D o
e e
Smradi == im(m2 — 1)-exp(m-0t) (-sha);

6
Smradi = —% m(m? —1) " [% et — — e_a)

test == Sm — Smradi,

— om o L me b am a3 e m 1 2
test : 1 me € B —e“ B € + B o + 6m(m
1) am(%ea_%e—a)
expand( (22))
0
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Ou seja, ambas as formulas sdo equivalentes!
testl7 = subs(m =17, test);

17
test17 = -408¢ 7%  208€ | gigel7e( Lo 1 a
K 2 2
plot(testl7,0.=-2-Pi..0);

3. %1079 5

2.%10°%7

1.=10°%7

-1, %1079

-Zx107%

S17 = subs(m=17,Sm);

S17:= -408¢! 7 4 A08¢e

S17radi = subs(m =17, Smradi),

L o1l o 1 -«
S17radi == -816¢ (2 e 7 e j
S17
Testl7div i= ————;
est7div = g i’
17
408¢!7 ¢ 4 208¢
1 e

Testl7div .= -

816 170:(1 a 1 —oc]
e 5 e e

plot( Testl7div,0.=-2-Pi..0,y=0 ..2);
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0.5 A

Ml;:]
'
INET

Substituindo a equagdo (51) na (49):
Formulas, = %-m-(m2 - 1)~e_m'|a|-sir1h(0c) :

Ho =—2.K.e‘m-|oc|.(cosh(0c) + m-sinh(|o])) — 6- (zez B Goo”) -sign(ot) -Formula,—
—>(Dm:—2Ke_|(xl " (cosh(a) + msinh(|o])) — (G;Z — 0-10;) m (m® —1) ¢ sinh(|of)
Que é equivalente ao deduzido por Radi.

Multiplicando a Eq. (40) por sinh(m-n)alpha e somando de n=1 até m-1
(40)

#,121 (l]un_l - 2"1””~cosh((1) + llun—l—] — 2-‘}’En~sinh(0t) + 2'”'5'”)'Sinh((m o I’Z)OL) —0—

Podemos dividir em 5 somatérios:

(i)
m—1 m—2 -
#Z '1"”71-sinh((m—n) o) >comN=n—1— z ¥y, -sinh((m — (N + 1) Z
=1 N=0 N=
! m—1 0 m—1
B YIS SR
N=1 N=0 N=m-—1
m—2 m—1
" D, W sinh((m— (N +1))-0) = >, %, sinh((m— 1 - N)-a)
N=0 N=1
(i)
m—1
nzl —2-'¥ -cosh(a) -sinh( (m — n)-a)
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m—1 m m
Z lI—’Iyz_/_J-sinh((m —n)-a) >comN=n~+ 1— z '{’N-sinh((m —(N—1))a)—
n=1 N=2 N=2
m—1 m
S
N=1 N=m N=1
m m—1
i D W, ssinh((m — (N — 1))-0) = >, ¥ -sinh((m + 1 — N)-0) + ¥ -sinh(ct)
N=2 ' N=1 '
(iv)
m—1 m—1
#n; — 2, sinh(cr) sinh((m — n) - —>com(50)—>n; ~22:7" n-g -sinh(0))
ssinh( (m —n)-o) =
m—1
—>—4-rw12-sinh(a) : 21 n-g -sinh((m —n)-o)
o
(V)
m—1 m—1
# Z 2:n-s -sinh((m — n)-o) —com (29) —>—8-Tw12~sinh(oc)~ z n-g -sinh((m —n)-a)
n=1 n=1

Assim, somando (i)+(ii)-+(iii)+(iv)+(v):

m—1
#(i)— X, ¥ sinh((m— 1 - n)-0)
n=1
m—1
#(il) > z — 2% -cosh(a) sinh( (m — n)-01)
n=1
m—1

#(iii)—>nz‘l1 l1"n'sinh((m +1—n)a)+ ‘Pm-sinh(oc)

m—1
#(iv) = 47" sinh(a) - >, n-g, sinh((m — n)-c)
n=1
m—1
#(v) -8 sinh(c) D, neg, sinh((m — n)-c)
n=1

Mas como (i) + (i) + parte_(iii) =
¥ -sinh((m — 1= n)-a) —2-¥ -cosh(a) -sinh((m —n)-0) + ¥ -sinh((m +1 —n)-0)
¥ sinh(o.(m —n —1)) —2 ¥ cosh(a) sinh((m —n) &) + ¥ sinh(o(m —n+1))

n
expandir

0
E como (iv) e (v) podem ser somados diretamente, temos que a soma total resulta:
m—1
#—W, -sinh(a) — lz'fxlz'smh(“)' z n-g -sinh((m —n)-a) =0—

n=1
m—1
#_)le: 1Z'TOOIZ Z n'gn'Sinh( (m - i’l)OL)
n=

Que é a primeira formula de (53).
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E, portanto, temos que, usando a formula (51):

(51)
m—1
# Formula, = Z n-gn~sinh((m —n)-o) = %m(m2 — 1) -e_m'|a|-sinh((x)
} n=1
Temos

¥ =127 [2-F0rn1ulc15]

m

¥ =277 m(m® — 1) "% sinh(a)

m

Que é a segunda formula de (53)
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7.12 Anexo 12 — Deducéo das eqs.(45), (48 ) e (49) e programacao para
aseqs.(46)(47)

[ numeragéo de formulas conforme Radi (2011) ]

Igualando a equacéo
(37)

0, = 2(K-cosh(2:0) + Brsinh(2:0)) —¢ (o

[e2]

,,-cosh(a) + o 22-sinh(|0c|)) —p

A equacio

(17)

¢, = A,-cosh(2-a) + B, + C,sinh(2-01) :

Temos:

A,-cosh(2-0) + B, + C,-sinh(2-a1) = £'cosh(2-0c) + i-sinh(Z-oc) — e_|°(|-(crac
2 2 11

.cosh(a) + G“QZ.Smh(|a|)) —p
.

A,-cosh(2-0) + B, + C,-sinh(2-a)) —%-sinh(la) = g-cosh(loc) — el (Gw”

-cosh(a) + zez'sinh(|(x|)) —p

Que é a primeira equacgéo da (54).
Tambem:

(33)

(DEn = n'(plinhan _)CDEI = (P/inha]

E, como a derivada de phi_1 (17) é:
A,-cosh(2-a) + B, + C,-sinh(2-at)

A, cosh(2a) + B, + C, sinh(2at)

diferenciar em relag@o a. alpha

24,sinh(20) +2C, cosh(2a)

Temos que:

¢, =24,sinh(20) +2C, cosh(2a) :
Ou seja,

Pr1 = Binhar

@, =24,;sinh(20) +2C, cosh(2a)

Que, por outro lado, €é igual a:
(47) (férmula j& corrigida)

[e2]

@, = 2K¢ % sinh(c) + B~ (c; = owu)-e'z'|°‘|-sign(0<) :

Portanto:

24,sinh(2a) +2C, cosh(2 ) —B=2-K-¢ % sinh(ar) — (a“’z_? - cwl,)-e‘2'|“|
'sign(oc)
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Que é a segunda formula da (54).

Fazendo a derivada de:
(17)
¥, = a,-cosh(2-0) + ¢, sinh(2-01) :
diferenciar em relagdo a. alpha 9 a, sinh(2 OL) +2 c, COSh(2 OL)
Utilizando esta derivada na formula:
(38) (ja corrigida)

by e, Tl g2l
linhal 12 P Iz

a,sinh(20) + ¢, cosh(2a) = 7, e 2ol

12
Que é a formula (57).

E necessario resolver o sistema linear formado pelas equacdes provenientes da
equacao (57) aplicada nas condicdes de contorno:
(57)

sinh(2-01) a; + cosh(2-a) ;= Twlz-e

Em alpha=alpha_1 e alpha=alpha_2:

—2~|(x|

e

sinh<2-(x1)-al +cosh(2-o¢1)~c1 0

sinh(2-oc )-a —l—cosh(z(x )-c -7 'e—2~|a2|
2 1 2 1 12
x=a_1l y=c_1
solve({sinh(z-al) X+ cosh(2-a1) y= z.exp( —2-abs<(x1) )’ sinh(Z-ag) x4 cosh<2 0‘2) =1
-exp( —2-abs(oc2)>}, {x,y})
t(cosh(Z(x )e_2|a2| — e_2|a1| cosh(2 )j
! 2

T cosh<2 ozz) sinh(2 (x]) — cosh(2 (x]) sinh<2 O‘z) Y

t[sinh(ZOt])e ]|sinh<2a2)j
cosh(z ocz) sinh<2 ocl) - cosh<2 ocl) sinh<2 a2>

-2 |a2| B e—2 |oc

—2‘0(2‘ _e—z‘oc

e
alSolve = (01, o) =~ t(‘mh(z‘f‘z) e ! cosh(z o) |
2 cosh<2 az) smh(2 (xj) - cosh(2 ocj) s1nh(2 az)
o -2 |oc
—e

. 2oy il
B t [smh(Z oc]) e smh(2 O‘g)j
cISolve = (04, 0,) = cosh(2 ) sinh(2t,) — cosh(2 ;) sinh(2t,)

Isto é, esta faltando um sinal negativo na segunda férmula da eq (58) de Radi!
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Programacéo para (55) e (56):

Aplicando alpha=alpha_1 e alpha=alpha_2 em (54), obtemos um sistema linear. Para
mostrar a (55) utiliza-se a (56).

Estratégia: comparacédo da subtracdo do valor de Radi (2011) com o obtido,
transformando tudo em parametros.

Equivaléncia entre D (ou D_0) e o Determinante do sistema linear (Regra de Cramer)

MATRIZ _
cosh(2a1> 1 sinh(Za]) —%sinh(Za])
cosh(2a2> 1 sinh(20¢2) —%sinh<2a2)
25inh(2a1) 0 2cosh<2oc1) -1

2sinh(2 ocZ) 0 2cosh<2 (xz) -1
~ determinante

-2 (cosh(Z oc]) + cosh<2 ocz) - 2) (cosh(z ocl) cosh<2 ocz) - sinh(z ocl) sinh(2 ocz) - 1)

Determinante da Matriz:

DM = (al, ocz) —-2 (cosh<2 al) + cosh(2 062) — 2) (cosh(Z 051) cosh(2 oc2)
— sinh(2 al) sinh(2 ocz) - 1) :

D (ou "D Zero")

DZ = (0, 0, =2sinh( o, — o) (sinh(et,)* + sinh(r,)*) :

DM (x,y) — DZ(x, )

P,

Ou seja, sdo equivalentes até alpha = -2*pi

cosh(Zoc]) 1 sinh(Zoc]) —%sinh(2al>

VATRIZ e cosh(2a2) 1 sinh(2(x2) —%sinh(2a2> :

Zsinh(ZocI) 0 ZCosh<2(x1> -1

25inh(2 az) 0 2005h(2 (x2> -1
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4,
B,
VETOR =
¢,
B
7f, .
S5
RESPOSTA =
g
&

MATRIZVETOR = RESPOSTA
Regra de Cramer para encontrar X (ou Al):
/i1 Sinh(2 a]) —% sinh(2 ocl)
/1 Sinh(2 az) —% sinh(2 ocz)

g, 0 2cosh(2 0{1> -1

2, 0 200sh(2 az) -1
7 determinante ATCramer
AlRadi = (@1, o) —cosh( e, + et)-(2:f,sinh( e,)* = 2:f,-sinb( ) + (2, — £,)

4

-mnh(ﬂ':. + ‘13}) :

Al Cramer(x, v) — Al Radilx, v)

Trateig_1,g_2,f 1, f 2 como parametros. Mesmo variando bastante, o patamar
entre -2*pi e 2*pi se manteve inalterado.
Regra de Cramer para encontrar y (ou B1):

cosh(2a1) f sinh(Z(xl) —%sinh(Z(xl)

cosh(2a2) 5 sinh(2a2) —%sinh(Z(xz)

2sinh(2a1) g 2cosh(2oc1) -1

2sinh(2 052) 2, 2cosh(2 (xz) -1
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determinante . B[ Cramer
BiRadi = (o1, o) —cosh( e, — o) (2, sinh( @, ) = 2./, sinh( )" — (g, + 2,)
-lsu'ﬂ':|{.|'1'I } +a, hmh{z 1,} g, bmh('? i })

Bl Cramer(x, v] — BIRadi(x. v)

g;=0.

x 10" L

x 101

x 10!
x 10"
x 10!
x 1013

Regra de Cramer para encontrar z (ou C1):

cosh(207) 1 f; - sinh(20;)

cosh(20) 1/, - sinh(2 o)

zsinh(z{xi) 0 g -1

2sinh(207) 0 g, -1
determinante ¢ 1Cramer e ('I.i" :1_1)
CIRadi = (o, o) —cosh( o + o) (g, — g

+ (f; — ;) tanh( o + o1 —|—f;n.-5inh(2-mi) —j}-sinh(l-mz)) :

CiCramer(x, v) — ClRadi(x, v)

g;=0.
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Regra de Cramer para encontrar w (ou B)
cosh(zcrj) 1 sinh(Emi) 5

cosh(zcr‘?) 1 sinh(Emz) _}}

zsinh(z{xi) 0 Emsh(zo:j] g;

zsinh(z mz) 0 2{:05]1(2 0:2) g,
M} BCramer = (), o)
BRadi 1 |:-:r_.., ot:}—z a:ush[:r_, - :I:} |:|:j' +_;l'5] -tanh{orﬂ, - cr:} +g = 3.’} :
BCramer(x, ¥) — BRadi(x y)

g;=0.
30 S
SRR TR e e e
X 10" aes e ratats
NN‘I""‘ u)('N!N"K.N’V
Lx 10 Soesees s
o TP b oo 4
i.x 10 AR
Lx 10 R 2
g N
N
ix 10
3% 10
. 10™
-4 4
) 2
0 0
v X
) 2
4 4
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7.13 Anexo 13 — Deducéo das eqgs.( 50 ) e ( 53 ) e programacéo para as
egs.(51),(52)e(54)
[ numeragéo de formulas conforme Radi (2011) ]

Introducdo de (18) em (33)
(18)
9, = (n ot]—nelﬂ-cosh{(n—l— 1)-) +Bﬂ-coshl:(rz— 1)-0) + Cﬂ-sinh{(n—k 1)) +Dﬂ-s1'nh{(n— 1)) :

Dpsvian (n ot}—-_dﬂ-(rz+ 1)-sinh((n+1) o) +B (n— 1)-sinh((n—1) o) + C,(n+ 1) -cosh((n
+1) o) +D (n— 1)-cosh((n—1) o) :

(33)

Q@ = (n—1)n(n+ 1)-';‘-?!{?1_ o)

(n—1)n(n—+1) (4, cosh((n+ 1) o) + B, cosh( (n— 1) o) + C, sinh((n+ 1) o) + D, sinh( (n

- l)o:])

simplificar

n(A4,cosh((n+1) o) + B, cosh((n—1) o) + C, sinh((n+ 1) o) + D, sinh( (1 — 1]0_]} (#—1)

ﬂ).‘:'n = lﬁfﬁﬁ.&aﬁf{m 0:}

n(d4, (n+1)sinh((n+1) ar) + B, (n—1)sinh((n—1) o) + C,(n+1)cosh((n+1) o) +D, (n
— 1) cosh( (n—1) o«.}}

Que € igual as equagdes obtidas por Radi, em (59).

(60) e (61)-------

Feita por estratégia semelhante a das equagdes (55) e (56). “n” ¢ tido como

parametro (que foi variado, assim como 0s outros parametros). As equacdes de (61)

sdo utilizadas na (60), entdo ambas serdo juntamente analisadas.

Usando as equacdes de (59), avaliando em alpha=alpha_1 e alpha=alpha_2:
MATRIZ? = (1 — 1) -n

cosh((n+1)-cx3) cosh((n—l)-o:},) sinh((n+1)-o:3) sinh((n—l}-cx‘,)
cosh((n+1)-cx_.__) cosh((n—l)-o:_.__) sinh((r:r+1)-o:_.__) sinh((n—l}-cx_.__) |
sinh((n—l— 1}-9:_,) n-(n— 1)-5inh((n— 1}-9:_,) cosh((rz—l— 1}-0:.,) rz-(n— 1)-c05h|:|:rr— 1)-9:_,)
sinh((-n—l— l}o'_) n-(n— 1)-5inh((n— 1}-9:_.,) cosh((rz—l— 1}-0:_._,) rz-(n— 1)-c05h|:|:rr— 1)-0:_.._)
.ilﬂ
Bﬂ
FETORZ = c
DH
| --mm‘
L
RESPOSTA2 — ml
m;u;

MATRIZ2 VETOR2 = RESPOSTAZ -
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Considerando n=5 ..

mi=5:
MATRIZ2 _
120 cnsh(rj 05;) 120 cnsh(4 05;) 120 sinh(ﬁ o,
120 cnsh(rj or) 120 cnsh(4 or) 120 sinh( :
120 sinh(ﬁ o:;) 2400 sinh(4 or;) 120 cnsh(rj orl)
120 sinh(ﬁ o’ﬂ) 2400 sinh(4 o:) 120 cnsh(rj or)

determinante  pcramer = |:a-‘r- 0_:}.

HnRadi = (cx-l., {x:) =20 I:siﬂh{ﬂ'('l‘; - 'I:] }: -t sinh{rx‘. - a.‘)z) :
EHnCramer|(x,y) — HnRadi(x, y)

&
<>
<

9
-
>
>
>
<>
>
>

.99
%
*.¢.9

()

()
OOOOOC)
0.0.0.0.0 ‘&

£3
)

X)
0.:00000
¢
*

&
>

%
)
\/

=)
@,
>,
.
>
<,
Sl
>
QP

OSSN
OOA

XX
)

5

&
&
&
&
5
N

¢

)

5

O

5
&

4
’0
\

)
9.
%

¢
9,

) 120 sinh(4 05;)
6 o:?) 120 sinh(4 or)
) 2400 cush(4 l.’.‘-'.’i,)

2400 cush(4 o:)

Usando as fungdes

(61)

P = (E)— (sinh(& + nn) sinh(n (& — nl):ln-sinh[n +nt) sinh(E—n)) .
Q, = (&n)—cosh(E +nn) sinh(n (§ —n)) — n-cosh(n +nE) sinh(E —n):

U, = (& n)—Acosh(8 +7n) sinh( (& nl):ln-cosh(n +nk) sinh(E—n)) .
7, = (& n)—sinh(g + »nn) sinh(# (§ —n)) — #-sioh(n + »#-8) sinh(E —n) :
P (En)— (sinh(&-7n) sinh(-n-(& —_'nn)l-fe-sinh(n—n-ﬁ) sinh(2—n))
0_,= (&n)—cosh(§-nn) smh[ -n-(&—n)) + n-cosh(n-nL) -si_nhiﬁ -n):
U= (En)— (cosh(E-nm) -sinh(-n (& —_T]Fg_]'_—f:-cosh[n—n-ﬁ} sinh(E — 1)) :
V_p=(&n)—sinh(E-nn) sinh(-n (§ —n)) + nsinh(n-»E) sinh(§ —n) :
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Para encontrar An (Cramer):

o, lzﬂmsh[rlo') 120 sinh(6 o, llﬁsinh(rlofi)-
o, lzﬂmsh[rlo') 120sinh(6 o, 1zﬂsinh(4a2)

2400 msh(4 o )

(

(
@y, 2400 s:nh{4ar) 12{}@511(6{:5,

(

o, z4unmnh{4ar) 120 cosh(6 o, 24unmsh(4ar)

M,. AnCramer = (o, o)
AnRad v= |:a:‘., a:}—Pn{ac_,, a::} 0, + Pﬂ{ o, ar_,] @, + Q,r{ o, -:!:} O+ Qﬂ[cx:, urr} Dy,

AnCramer(x, y) — AnRadi(x, y)

(o}

n1=U'

X 10°
% 10
X 103
X 10
% 10
% 10"

Para encontrar Bn (Cramer):
llﬂmsh(ﬁ o:j) @, , 120sinh(6 o,

(63)

inh(6 ;) |
llﬂsinh(ﬁofi) o 12{1@511(6:[1) 24004:0511(4%)

(63)

120 sinh(ﬁ 0:2) @, 120cosh

determinante  BmCramer = |:-:x., -:x.t:|- -
— £
BrRad = (o, o) =P _,( o), o) tD,;J. P00 0y) O+ Oy 0 00) @p F Q0 0) @
BnCramer(x, ¥) — BnRadi(x, y)
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Para encontrar Cn (Cramer):

llﬂcosh(ﬁ a:ri) 12{1.-;-:.511(4 a:ri) 120 sinh(4 o’i]

mﬂf
llﬂcosh(ﬁcrz) llﬂcosh(xlcrz) Q. llﬂsmh(ﬂlur]

120 sinh(ﬁ aj) 2400 sinh(4 af!,] ; 2400 msh(44:r}
120 sinh(ﬁ 4:!2) 2400 sinh(4 4:!2] , 2400 msh(44:r}
Mp Cnf.'.‘ramer ] .[:a @, '?

CnRaah—(;x -:r_}—~—{ [:a' a]ﬂ +L{.:-c -:x}i‘.'-‘- —I-(I (ar or}+msh(1na—[n—1}a}:|

"@Em' + I..Jf{a‘ } Enl ]
CnCramer(x, ¥) — CnRadi(x, ¥)

Para encontrar Dn (Cramer):
12{}@511(603,) 12{}@511(403,) 120 sinh(6 o,

(6)
12{}@511(6{12) 12{}@511(4{12) lZDsinh(ﬁ{r]
(699) @

llﬂsinh(ﬁo:i) 2400 51'1111(4{11,) 120 cosh{6 o

llﬂsinh(ﬁo:z) 2400 51'1111(4{12) 12{}@511(6{12)

_determinante  pyCramer v (. ) — 1728000 cosh(4 o) cosh(6 u,].lm, )

Driadh = (o ) = Uon( . %) @,y + Uon( %0 07) @y + Vg .
DnCramer(x,y) — DnRadi(x, ¥)

Q

w1 =0

x 10"
x 10

x 10
X 101
X 10M

'_’T{d*‘ I} Enl
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Inserindo (19) em (34)
(19)

Y, = (n o) —a, cosh((n+1)-0) + & -cosh((n—1)-0) + ¢, sinh((n+1) 0) +d sinh((n—1)0):

Wi = (n a]—baﬂ-(n+ 1) sinh( (n+ 1) o) + b (n— 1)sinh((n—1) o) + c, (n+ 1)-cosh( (n+ 1) o)
+d,(n— 1)-cosh((n—1) o) -

(34)

¥ = (n—1)n(n+1)y(no)

(mn—1)n(n+1) (aﬂcnshl:(n+ 1) o) +5ﬂcnsh|[|:n— 1) o) +:'.H5c[nhl:|:n+ 1) o) +dﬂ51'nh[(rx

— lja]}

L‘UE:: = n'%in.&an[r;‘ D:']
nla,(n+ 1) sinh((n+ 1) o) +b,(n— 1) sinh((n—1) o) +c, (n+ 1) cosh((m+1) o) +d,(n
— 1) cosh((n— ljcx]}

Dai, nota-se que a primeira formula € igual a do Radi, mas a segunda difere: Radi esquecen de trocar os
operadores (cosh <-> sinh), pois estes foram derivados.

n-(nz— 1) cosh((n+ 1) c) n-(nz— 1)-c05h((n— 1) O‘) n-(nl— 1) smh((n+ 1)0) n (nz— 1)-sinh((n— l)a)
LATRIZS n(nzfl) cosh((n+1) o‘) " (n27 1) cosh((nf 1) o‘) n(nlfl) smh((n+1) o‘_) " (n27 1) s{nh((nfl) o‘_)
n-(n+ 1) 51r1h((rs+ 1) a) n (n— 1)-5inh((n— 1) o n-(n+ 1)-cosh((n+ 1)0) n (n— 1) cosh((n— 1)0)
n-(n+1] smh((n+ 1] o’) n-(n—l)-mnh((n—l) o n(n+1]-cosh((n+1]-o:}) n-(n—l) cosh((n—l)-o:})
aﬂ
E].?'E
VETORZ =
d,
L R o |
w
RESPOSTA3 == |
MATRIZ3 VETORS = RESPOSTAS -
MATRIZ3

120 cosh(fr cx_;,) 120 cosh(4 o:_;,} 120 s{nh(ﬂ o) 120 s{nh(4 Oi_;.)

)
)

30 sinh(ﬁ ozg) 20 sinh(4 0:3) 30 cosh{ 6 cx;) 20 cosh(-'i- cx;)
)

(
30 sinh(ﬁ o:_:_) 20 sinh(4 o:_:_) 30 cosh(ﬁ a,

20 cosh(4 o:_;_)
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deferminante  pracramer? = {:xj, cr_:}
HiRadi te= {"-""'j- af:}—-z-h" (sinh(n-{urj - 'I;p:]]: - ’F'sinh{qj' - II?:]:] :

HnCramer2(x, y) — HnRadli(x, y)

10%
10%
10%
10%
0"’%-5: >
Usando as fungdes
(61)
P = (& n)—ASR(E+ ) sih(n(8—n)) + nsinh(n + »8) sinh(E — 7)) .

n+1
Q,= (E 1) —cosh(E + »-n)-sinh(n (E—n)) — n-cosh(n + n-E) -sinh(E — 1) :
U = (E0)— (cosh(E + n-n) sinh(n-(E—n)) + n-cosh(n + »n-E) sinh(E—n))
i n+1 ’
V= [E. n}—rsinh(E_, - H-'I'” Sinh(ﬂl:E_, . T‘[}} — H-Sinh{f] + ?IE_,) Smh(ﬁ_, - T]] :

(s (sinh(g-nn) sinh(-n(§ = n))-n-sinh(n-n&) sinh(§ = n)) .
P_, = (&n) T :
0_,+= (&n)—cosh(E-nn) sinh(-n-(& = 1)) + n-cosh(n-n&) sinh(E )
U = (& n)—osh(Enn) sinh(-n (& —n)) -»cosh(n-nE) sinh(E—n)) .
- -n+1 ’
V_y=(&n)—sinh(&-nn) sish( -2 (§ —n)) + n-sinh(n-»-&) sinh(§ —n) :
Para encontrar 2_n (Cramer):
A 120cosh(4 °’1) 1205inh(6a‘.) lzosinh(4o:])

¥ 120cosh(4 oz.,) 120$inh(6oz:) lZOsinh(4 or__,)

Yot 205inh(4 ozj) 30 cosh 6on,) 20cosh(4 ozl)

(
¥ 20 sinh(4 or:) 30cosh(6 oz_,) 20cosh(4 oc:)

Seterminante | o oramer? = (. @)= 72000 cosh(4 a:)zcosh(G %)%,

anRad = (o, 0)=Py( 0, 0)) ¥, + Py 0) ¥, + Q@ 0) - ¥pyy + O % @) ¥y
anCramer2(x, y) — anRadi(x, y)
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Para encontrar b_n (Cramer):

-llﬂmsh(ﬁ-mi) ¥, 120sinh(6 o) 12{}51'1111{44:!;)-

12ﬂmsh(ﬁm3) o lzﬂsinh(ﬁmz) lzﬂsinh{:im)
Enl

30 sinh(ﬁ 0:2] ;2

Eﬂsinh(ﬁo:i) w Eﬂmsh(ﬁmi) 20 cosh

(
30 msh(ﬁ r.rrz) 20 msh(4 mz)

determinants  DnCramer = (o), o)
=

bnRads = {a}.. u::}—*P_,,(or;. a::]-‘?m. + F_,,{ o "‘,-‘) ¥+ Q_n(or;. a::'_]-'?zm, - Q_,,{ar:. ac;]

L' S
£
nCramer2(x, y) — bnRadi(x, ¥)
¥
10°
107
10°
103
103
X 10;:
x 10 : 3
-4 223 % 4
0 0
Para encontrar ¢_n (Cramer):
120 cosh(ﬁ ofi) 120 msh(4 {Il,) v 120 smh(4 D.’E}

llﬂcosh(ﬁcrz) 12(){:05]1(4{12) ;2 1zﬂsinh(4of2}
30 sinh(ﬁ{x;) 20 sinh(:hx;) Penl
30 sinh(ﬁm) 20 sinh(:;m) ¥ens 2[!{:05]1(44:!2)

& ]

20 msh(4 mﬁ,)
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determinantt  cnCramer? 1= {-:!3, or:)
cnRadi = (o, 09) = - (U op o) ¥,y + Uy 0 04) ¥ + (¥ 2p o) + cosh(2moy — (n—1)
-ar.‘J,}}-'FEHI + I'}J{:x:, arj}-'?&:) :

enCramer2(x ) — cnRadi(x, ¥)

¥ =0
x 10
x 107
10%5
10%
x 103
x 10°%
x 10
x 10
10% :
Y ' =52
<
-2 2
e 2SS
0 SRR =0
¥ PR < x
X -
4 4

Para encontrar d_n (Cramer):

'12{1@511{15%) llﬂcosh(rlcri) lzﬂsinh(ﬁmi) ¥
1zﬂmsh{ﬁm2) llﬂcosh(rlcrz) 12ﬂsinh(ﬁm2) ;2
3[!51'1111(64:!3} 2051'1111(44:!1,) 304:05]1(64:[1,) Pent
3[!51'1111(64:!2} 2051'1111(44:!2) 304:05]1(64:[2) ¥

determinante  dnCramer? = {afl., ar:}

dnRadi v= {-:x;, ur:}— L'_E{ o, m:} L L'_R{ o, a-:‘.] WL+ i-'_,:{afrl., n::} e+ I"_n|:4:r.__, :xll.}
o

anCramer2(x, ¥) — dnRadi(x, ¥)

¥ =0
nl
N\
. -
St rarer:
et ata e
- e
e o
x 10° ateteletetete oo’
. R R
l. N~I~N~~~~~I~~~K~l~~'l"
RS oot
x1 N s
X
N
%1
% 101
4 4
b) -2
) 0
y x
9 )
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7.14 Anexo 14 - Verificacdo do método de elementos finitos:

programacao para o problema de Kirsch

p[::l:
00:=1:
e L.
10

0 (1 2 [2(9 n)]]+pi‘(l+E2)
= —_— . — . . _—— - .
06 o, cos > (1_62) :
6. :=-m:
1
Qf.:=+7t

plot( 68(9), 0=0 9/)

B ER

m|;|_

s[5
E
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8 APENDICES

8.1 Apéndice 1 - Rotacao do tensor das tensdes

Matriz de transformacéo (rotacao em z):
cos(0) -sin(0)
sin(0) cos(0)

-cos(e) -sin(0) -
_sin(e) cos(0) |
- cos(8) sin(0) -
_ -sin(@) cos(0) |

atribuir a um nome

MZ‘

Tensor das tensdes:

o1
T x|
T 0o
Xy
Em coordenadas polares:
0. To
T o= =M, TM
TQ}‘ 0-9
Gr Tr@
o = H(cos(e) o+ sin(0) Tyx) cos(0) + (cos(e) T + sin(0) Gy) sin( @),
or 6
—(COS(G) o_+sin(6) ’L'yx) sin(0) + (COS(B) T, + sin(0) O'V) cos(0) ]
[(—sin(e) o+ cos(6) Tvx) cos(0) + (—sin(G) T, + cos(0) O'V) sin(0), - ( -sin(6) o
+ cos(0) 1'w) sin(0) + (—sin(G) T, + cos(0) O'y) cos(0) ]]
Dai:
0. =T, (1, 1)
c = (cos(e) o_+sin() Tvx) cos(0) + (cos(e) T, + sin(0) O'v> sin(0)
69: Tpolar(2 2)
0,= —(—sm(e) o+ cos(6) ‘L'yx) sin(0) + (—sin(@) T, + cos(8) GV) cos(0)
Tre - Tpo/m ( L 2)
To= —(cos(e) o_+sin(8) r}x) sin(0) + (cos(e) T, + sin(0) G)) cos(8)
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