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RESUMO 

 

Elementos estruturais de chapas são comuns em aplicações de engenharia, desde 

aplicações simples até a utilização na fuselagem de aeronaves. A integridade 

estrutural é um fator de segurança e de confiabilidade da peça e/ou do conjunto 

mecânico. Uma das principais causas de falhas em estruturas é o aparecimento de 

trincas, frequentemente originadas em regiões onde ocorrem concentrações de 

tensão. A presença de furos em chapas é um exemplo típico de agente concentrador 

de tensões e, desta maneira, a determinação dos fatores de concentração de tensão e 

as características da distribuição de tensões são fatores importantes para garantir a 

segurança da estrutura. 

Neste trabalho, serão analisadas as componentes de tensão em chapas planas 

contendo orifícios circulares em condições de estado plano de tensão. Os 

carregamentos poderão ser aplicados tanto no contorno da chapa quanto no contorno 

dos orifícios. O método de solução abrangerá tanto o uso de métodos analítico-

numéricos (uso da função de tensão de Airy e coordenadas bipolares) quanto 

métodos numéricos como o método dos elementos finitos. As análises 

computacionais serão feitas com o auxílio dos programas Maple para a abordagem 

analítico-numérica, e dos softwares Patran e Nastran para as análises por elementos 

finitos, sendo comparadas, sobretudo, as tensões circunferenciais nos bordos dos 

orifícios utilizando as duas metodologias propostas. 
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ABSTRACT 

 

Plate elements are usually applied in engineering structures, from simple applications 

to aircraft fuselage. The structural integrity is a fundamental aspect related to the 

safety and reliability of mechanical equipment or devices. One of the main failure 

causes in structures is the occurrence of cracks, which are often observed in regions 

where stress concentration exists. Holes in plates are a typical example of stress 

concentrator and, so, the correct determination of stress concentration factors and the 

stress distribution characteristics are important factors to guarantee the structural 

safety. 

In this work, stress components in plates with two circular holes under plane stress 

state will be analyzed. The loads may be applied not only in the borders of the plate, 

but also in the holes’ borders. The solution method will include analytical-numerical 

methods (using the Airy stress function and bipolar co-ordinates) and numerical 

methods, such as the Finite Element Method. The computational analysis shall be 

done with Maple for the analytical-numerical part, and with Patran and Nastran for 

the Finite Element Method part. Finally the hoop stress along the holes’ borders will 

be compared within both proposed methodologies.  
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1 INTRODUÇÃO 

 

Muitos problemas na área da engenharia envolvem os elementos estruturais de 

chapas. Furos nestes componentes geram concentrações indesejadas de tensão, que 

podem levar a trincas e à propagação destas, comprometendo a integridade estrutural 

da peça. A determinação dos fatores de concentração de tensão é, portanto, um fator 

decisivo na segurança da estrutura. 

Para a obtenção de um projeto eficiente, econômico e confiável, além de haver 

técnicas capazes de reduzir concentrações de tensão em – ou próximo de – 

descontinuidades geométricas em estruturas de engenharia, é de extrema importância 

ter as ferramentas e modelos (analíticos e/ou numéricos) para calcular e prever o 

nível de tensões, deformações e os riscos envolvidos. 

A maioria das soluções exatas existentes aplica-se apenas em condições livres de 

tensão nos bordos dos furos, apesar de em aplicações de engenharia, serem bem 

frequentes situações de furos pressurizados (Radi E. , 2011). Deste modo, este 

trabalho visa analisar as componentes de tensão e deformação em chapas planas 

contendo orifícios circulares com carregamentos variados, aplicando o modelo 

analítico desenvolvido por Radi (2011) e outros pesquisadores, e comparar com o 

uso de métodos numéricos. 

A aplicação direta destes métodos é notada na indústria aeronáutica: em juntas por 

rebitagem em componentes estruturais, como por exemplo, na ligação entre a 

fuselagem e as cavernas ou reforçadores. Com a utilização de ligas de alumínio, 

atualmente, as juntas rebitadas tornaram-se o principal modo de fixação (Megson, 

1999). 

Além desta indústria, são observáveis outros campos de aplicação, como por 

exemplo, na fabricação de túneis, em que são necessárias previsões de movimentos e 

mudanças de tensão nas superfícies trabalhadas nos bordos do túnel (Carter & 

Booker, 1983).  
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2 REVISÃO BIBLIOGRÁFICA 

 

Neste capítulo serão revistos alguns conceitos básicos da Teoria da Elasticidade, 

necessários à compreensão do escopo do trabalho, e serão apresentadas as pesquisas 

mais relevantes realizadas na área. 

 

2.1 Conceitos básicos 

2.1.1 Estado plano de tensão 

O estado plano de tensão é obtido quando uma chapa fina é carregada em seus 

contornos, cuja distribuição de carregamentos é uniforme ao longo da espessura e 

paralela ao plano da chapa. Como são nulas as componentes de tensão 𝜎𝑧, 𝜏𝑥𝑧 e 𝜏𝑦𝑧 

nas duas faces da chapa, pode-se admitir que também o serão no interior da chapa. 

Desta maneira, o estado de tensão, independente de 𝑧, é caracterizado apenas por 𝜎𝑥, 

𝜎𝑦 e 𝜏𝑥𝑦 (Timoshenko & Goodier, 1980). 

 

2.1.2 Função de tensão de Airy 

A solução de problemas bidimensionais se resume a integrar as equações diferenciais 

de equilíbrio para atender às condições de contorno e à equação de compatibilidade 

de deformações. Para resolver estas equações, usualmente é utilizada a função de 

tensão de Airy 𝜒, que deve satisfazer à equação biharmônica a seguir (Megson, 

1999). 

∆∆𝜒 = 0 ( 1 ) 

No caso de o problema ser formulado em coordenadas bipolares, a eq.( 1 ) é 

modificada (Jeffery, 1921). 
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2.1.3 Concentração de tensão 

A presença de entalhes, orifícios, ressaltos etc., em peças estruturais, leva a uma 

modificação da distribuição de tensões, e consequentemente à ocorrência de níveis 

mais elevados de tensão nas proximidades destes elementos concentradores de 

tensão. O fator de concentração de tensão é definido, para o caso de tensão normal, 

conforme a eq.( 2 ), onde 𝜎𝑛𝑜𝑚 é a tensão nominal (uma relação entre o esforço 

aplicado e a geometria do elemento que resulta na tensão média) e 𝜎𝑚á𝑥 é a tensão 

máxima na borda do elemento concentrador de tensão, como um furo numa chapa 

(Peterson, 1966). 

𝐾𝑡 =
𝜎𝑚á𝑥

𝜎𝑛𝑜𝑚
 

( 2 ) 

 

2.2 Orifícios múltiplos em chapa sob tensão 

Em componentes estruturais, a presença de orifícios gera concentrações de tensões 

que podem resultar em propagação de trincas no material, levando à sua falha. Deste 

modo, torna-se imperativa uma avaliação precisa do fator de concentração de tensão 

nos componentes, de modo a garantir integridade estrutural e segurança em serviço. 

 

2.2.1 Solução de Jeffery 

A solução completa dada em coordenadas bipolares foi feita, inicialmente, por 

Jeffery, onde a família de curvas obtidas tomando-se uma das coordenadas (α ou β) 

com valor constante corresponde à uma família de círculos coaxiais (círculos cujos 

centros compartilham um mesmo eixo); ou seja, há dois eixos e duas famílias de 

círculos, como pode ser visto na Figura 1. Esta solução possibilita tratar de 

problemas como: chapa infinita contendo dois orifícios circulares, chapa semi-

infinita com apenas um furo e disco circular com um furo excêntrico. As fórmulas de 

deformação e tensão foram deduzidas com uso da função de tensão de Airy e de 

mudança de sistema de coordenadas (Jeffery, 1921). A Figura 2 ilustra as 

coordenadas (α e β) utilizadas por Jeffery. 
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Figura 1 – Famílias de círculos coaxiais (Timoshenko & Goodier, 1980) 

A função de tensão é obtida a partir de uma expressão geral, e seus coeficientes são 

determinados quando o carregamento na borda da chapa é expandido em séries de 

Fourier, pois o sistema como um todo está em equilíbrio. No mesmo trabalho, 

algumas aplicações são estudadas, como, por exemplo, o caso de um cilindro com 

furo excêntrico, cujas faces estão carregadas com pressões hidrostáticas diferentes, e 

o caso de uma chapa semi-infinita com furo circular sob pressão uniforme, que é o 

caso das tensões próximas de um rebite, em uma chapa (Jeffery, 1921). 

 

Figura 2 – Esquema geral de coordenadas (Jeffery, 1921) 
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Porém, o problema de uma chapa contendo dois furos iguais não foi trabalhado em 

sua plenitude. Um pouco diferente da solução de Jeffery, Ling (1948) propôs uma 

aproximação similar que correspondia a vários sistemas fundamentais de tensão 

atuando na chapa. Uma função biharmônica foi adicionada ao sistema de tensões de 

tal maneira que, no infinito, não houvesse nenhuma tensão. Os coeficientes 

paramétricos envolvidos na solução foram ajustados de modo a satisfazer as 

condições de contorno nos bordos dos furos. Tais coeficientes foram calculados com 

o auxílio de coordenadas bipolares, obtendo-se, ao final, expressões explícitas para 

eles. Foram discutidos três sistemas fundamentais de tensão, a saber: tensão biaxial e 

tensão uniaxial (em cada direção, longitudinal e transversal, separadamente). Em 

particular, foram calculados os valores máximos de tensão (Figura 3). Além disso, 

foram apresentadas as fórmulas para a tensão ao longo dos bordos dos furos. O caso 

limite, em que os furos são tangenciais, também foi discutido (Ling, 1948). 

 

Figura 3 – Tensão máxima (Ling, 1948) 

 

2.2.2 Chapa com reforços ou inclusões 

De modo a considerar reforços (de mesmo material que a chapa) em ambos os 

orifícios, uma solução analítica foi desenvolvida por Dhir (1968) para a análise de 
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chapas sob carregamentos biaxiais. Um parâmetro adimensional proposto pelo autor 

foi definido como a razão entre a área seccional de material removido e a área total 

de reforço (área reposta). Deste modo há apenas dois valores paramétricos neste 

método, a saber: a razão que governa o tamanho e a separação dos orifícios, e a 

quantidade de material de reforço. O método de solução foi de sobrepor ao estado 

fundamental de tensões (sem os orifícios) um sistema auxiliar de tensões que não 

afetasse os carregamentos, mas que ajudasse a satisfazer as condições de contorno 

dos orifícios reforçados. Ou seja, uma função de tensão auxiliar foi adicionada à 

função de tensão fundamental de Airy. A função auxiliar de tensão utilizada foi a 

formulada por Jeffery, anteriormente. As tensões foram obtidas em coordenadas 

bipolares como séries infinitas de Fourier, cujas convergências numéricas eram 

governadas pela razão entre raio dos furos e o espaçamento entre eles. Os resultados 

foram computados como fatores de concentração de tensão para um número de 

geometrias de furos e reforços que frequentemente ocorrem na prática (Dhir, 1968). 

Recentemente, Radi e Strozzi (2009) apresentaram uma solução analítica para 

tensões e deformações em um disco elástico e isotrópico induzidas por ajuste com 

interferência de uma inclusão circular, mas excêntrica ao disco. O disco era 

submetido a tensões normais uniformes em sua borda externa. A inclusão era do 

mesmo material que o disco e ambos os elementos estavam ou em estado plano de 

tensão ou em estado plano de deformação. Foi admitida a hipótese de contato sem 

atrito entre as duas peças para que, assim, houvesse apenas pressões de contato 

normais entre os dois corpos. A solução foi obtida usando a expressão geral de 

Jeffery para uma função de tensão biharmônica em coordenadas bipolares, com a 

função de tensão de Airy na forma de séries infinitas de Fourier para os campos de 

tensão e deformação. Os resultados mostraram que a tensão máxima efetiva de von 

Mises devido à interferência com a inclusão ocorreu em ajustes com maior 

excentricidade, mas ela se afasta do eixo de simetria para pequenas excentricidades 

(Figura 4) (Radi & Strozzi, 2009) . 
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Figura 4 – Variação da tensão efetiva de von Mises perto da inclusão circular, normalizada por 

𝒑, para menor (a) e maior (b) excentricidade (Radi & Strozzi, 2009) 

 

2.2.3 Chapa com furos de tamanhos diferentes 

Para o caso de furos circulares de tamanhos diferentes (Figura 5), Iwaki e Miyao 

(1980) propuseram uma solução exata para as tensões em uma chapa infinita sob três 

carregamentos fundamentais: tensão uniforme em direção arbitrária, pressão interna 

em um furo, um furo sob cisalhamento uniforme. A função de tensão requerida foi 

definida como uma soma de três funções de tensão: uma função de tensão base 

(situação de uma chapa infinita com um furo circular sob tensão) somada a outras 

duas que especificavam o sistema de tensões necessário para satisfazer as condições 

de contorno, tanto nas bordas dos furos quanto no infinito (Iwaki & Miyao, 1980). 

 

Figura 5 – Geometria e sistema de coordenadas (Iwaki & Miyao, 1980) 

Após a escolha de ambas as funções, as condições necessárias para a determinação 

de seus coeficientes foram reduzidas a um problema de solução de um sistema de 
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equações lineares. Expressões para a tensão circunferencial nas bordas dos furos 

foram explicitamente deduzidas e os fatores de concentração de tensão foram 

calculados. As tensões em uma chapa infinita com dois furos tangentes de tamanhos 

diferentes também foram discutidas, como na Figura 5, quando 𝑑 equivale à soma 

dos raios dos furos (Iwaki & Miyao, 1980). 

Uma solução geral foi proposta por Green (1940) para problemas de distribuições 

generalizadas de estado plano de tensão em uma chapa infinita contendo orifícios 

circulares de tamanhos variados e posições arbitrárias, sujeitos apenas a certas 

condições de convergência da solução. Foi utilizada uma função de tensão para o 

estado plano de tensões na ausência de orifícios. De modo a permitir o efeito dos 

orifícios, foi necessário um conjunto de funções de tensão para cada furo, que 

resultasse tensão nula no infinito e uma expressão de valor único para as tensões e 

deformações. Utilizando coordenadas polares fixas em cada orifício, ele indicou o 

método para estender os resultados de modo a permitir o efeito de algumas condições 

de contorno. O caso particular de uma chapa infinita sob tensão contendo três furos 

em sequência foi discutido. Em seguida foram obtidos alguns valores numéricos e 

comparados com experimentos já antes realizados, apesar da não consideração dos 

efeitos de borda (Green, 1940). 

Tais resultados foram, com auxílio de transformações de coordenadas, utilizados por 

Hoang e Abousleiman (2008) para formular uma solução para a situação de uma 

chapa infinita com dois furos iguais ou diferentes sujeitos a uma tensão uniforme ao 

infinito e a pressões na região interna dos furos. Apesar da possível complexidade, 

esta aproximação pode ser generalizada para um grupo arbitrário de furos circulares 

de qualquer tamanho (Hoang & Abousleiman, 2008). 

 

2.2.4 Utilização de furos de alívio de tensões 

A concentração de tensões causada por um orifício pode ser aliviada com a utilização 

de outros orifícios menores, na proximidade do furo original, como exemplificado na 

Figura 6, suavizando a trajetória do fluxo de tensões principais causadas pelo furo 

original (Heywood, 1952). Seguindo este princípio, Erickson e Riley (1978) fizeram 
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um estudo sistemático utilizando métodos de foto-elasticidade bidimensional para 

determinar os tamanhos e posições otimizadas para os furos auxiliares para certo 

número de chapas com diferentes furos centrais e razões entre o diâmetro e a 

espessura da chapa (Erickson & Riley, 1978). 

 

Figura 6 – Um furo com dois furos de alívio na direção de cisalhamento. À esquerda, em 

sequência, à direita, lado a lado (Neuber, 1985)  

Meguid (1986) fez um estudo extenso sobre elementos finitos para o estado plano de 

tensão com diferentes configurações de furos de alívio mediante a concentração de 

tensões em uma chapa com carregamentos uniaxiais e dois furos alinhados (Figura 

7). O estudo revelou que a introdução destes furos ajudou a suavizar a trajetória do 

fluxo de tensões principais e reduziu os efeitos do fator de concentração de tensão, 

além de melhorar a resistência e redução de peso. Com esta mudança nos valores 

máximos de tensão, houve uma melhora na vida à fadiga (Meguid, 1986). 

Em um estudo posterior, uma solução geral descrevendo a interação entre o furo 

principal e um furo de alívio com posição arbitrária – sob condições de carregamento 

uni e biaxiais – foi formulada por Meguid e Shen (1992). A análise baseou-se nos 

potenciais complexos de Muskhelishvili, em um apropriado procedimento de 

superposição e em uma expansão em séries de Laurent, cujos coeficientes foram 

determinados a partir da condição de ausência de tensões nos bordos dos furos 

(Meguid & Shen, 1992). 
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Figura 7 – Exemplos típicos de modelos de elementos finitos para: (a) um quadrante para o caso 

onde 𝒅 = 𝑫/𝟑, (b) um quadrante para o caso onde 𝒅𝟏 = 𝟐𝑫/𝟑, (c) um quadrante para o caso 

onde 𝒅𝟐 = 𝑫/𝟒 e 𝐝𝟑 = 𝟐𝐃/𝟑 (Meguid, 1986) 

Em particular, a variação na tensão circunferencial e o fator de concentração de 

tensões no furo principal foram obtidos em uma forma geral assintótica, enquanto 

que expressões de forma fechada explícitas pertencentes à solução de quarta ordem 

foram desenvolvidas utilizando uma técnica apropriada de perturbação. Soluções de 

ordem superior foram computadas e usadas para proporcionar uma descrição 

detalhada dos efeitos tanto dos carregamentos aplicados nos contornos quanto das 

configurações dos furos de alívio com respeito ao fator de concentração de tensões 

nos furos. Também foram estudados alguns casos com múltiplos furos. Este trabalho 

proporcionou uma ferramenta de design quantitativa e uma visão valiosa do efeito de 

furos de alívio na distribuição de tensões no furo principal em estruturas de 

engenharia (Meguid & Shen, 1992). 

 

2.2.5 Análise de múltiplos furos circulares 

Um conjunto de furos circulares dispostos em zigue-zague é um importante modelo 

de descontinuidades aleatoriamente distribuídas em materiais, além de ser um 

problema básico de concentrações de tensões. Através de uma análise teórica de um 
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conjunto genérico de furos circulares em zigue-zague em um sólido infinito sob 

tensão uniaxial, Isida e Igawa (1991) obtiveram resultados numéricos para as tensões 

máximas, para o fator de concentração de tensão e para o efeito da perfuração na 

rigidez à tensão do sólido para diferentes tamanhos de furo e posicionamentos. Nesta 

análise, foram utilizadas regiões unitárias adequadamente definidas e foi assumido 

potencial de tensões complexo na forma de séries de Laurent, cujos coeficientes 

foram determinados através das condições de contorno da região utilizada (como, por 

exemplo, o triângulo ODF da Figura 8). Para o cálculo numérico, foi utilizado um 

método baseado em forças e deslocamentos resultantes de elementos com parâmetros 

geométricos definidos (razão de distâncias entre furos e raios); a porosidade do 

sólido então foi calculada de modo a definir um fator adimensional para o fator de 

rigidez à tensão (razão entre o módulo de Young aparente e o do material original, 

sem furos). Os casos extremos também foram considerados, isto é, em que é 

produzida uma sequência de furos na direção longitudinal ou transversal, e o caso de 

furos em contato. Os resultados foram convenientemente ajustados em fórmulas 

polinomiais para aplicações de engenharia (Isida & Igawa, 1991). 

 

Figura 8 – Conjunto duplo e periódico de orifícios circulares em zigue-zague em um sólido 

infinito sob tração (Isida & Igawa, 1991) 

Um método de alternância foi proposto por Ting, Chen e Yang (1999) para a análise 

de interação entre vários orifícios em um domínio infinito bidimensional. 

Inicialmente, foi derivada uma solução analítica para um único orifício circular em 

um domínio sob tensões de tração arbitrárias. Embora esta solução analítica já tenha 
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sido desenvolvida pelo método do complexo de Muskhelishvili em formas gerais, a 

solução elástica correspondente a trações arbitrárias expressa na forma de séries de 

Fourier foram completamente derivadas utilizando a função de tensão de Airy, 

objetivando simplicidade e eficiência. O problema de um sólido bidimensional 

infinito contendo orifícios circulares em estado plano de tensão, conforme a Figura 9 

(a), pode ser expresso como superposição de dois casos: o caso em que uma força 

externa atua no infinito na ausência de orifícios (Figura 9 (b)) e o caso com múltiplos 

furos circulares sob trações fictícias ao longo dos bordos dos furos. Assim, a solução 

analítica anterior foi então utilizada no processo de superposições iterativas 

sucessivas capaz de satisfazer as condições de contorno para cada orifício circular do 

problema. Para a validação deste método, foram resolvidos diversos problemas de 

chapas perfuradas. As interações entre os orifícios foram estudadas em detalhe, e os 

resultados computados assemelharam-se às soluções de referência disponíveis, 

indicando a exatidão e a eficiência do método e mostrando que com uma técnica 

simples e mínimo esforço computacional é possível obter fatores de concentração de 

tensão precisos (Ting, Chen, & Yang, 1999). 

 

Figura 9 – Esquema de superposição para o método de alternância (Ting, Chen, & Yang, 1999) 
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2.2.6 Consideração da pressão interna 

As interações elásticas entre furos com pressão interna foram analisadas no trabalho 

de Davanas (1992). Utilizando métodos matemáticos rigorosos, fórmulas foram 

deduzidas para a descrição destas interações. Foram obtidas soluções para as 

iterações entre: dois furos de igual tamanho e pressão; um furo pressurizado e outro 

de igual tamanho sem pressão interna; um furo pequeno e pressurizado e um maior 

sem pressão interna; e entre dois furos de mesmo tamanho com tensões em suas 

superfícies de magnitude igual, mas de sinais opostos (ou seja, um pressurizado e 

outro com tensões de tração em sua superfície). Foi provado que, ao contrário do que 

era aceito até então, todas as interações elásticas entre furos são repulsivas. A 

magnitude desta força repulsiva tende a aumentar com o decréscimo da distância 

entre furos. Também foi observado que a periferia dos furos foi distorcida e não se 

manteve circular, o que é uma importante característica da interação entre furos 

(Davanas, 1992). 

 

2.2.7 Impacto da excentricidade na interação elástica 

Interações elásticas entre furos de diversas excentricidades, assim como entre 

fissuras, foram analisadas por Tsukrov e Kachanov (1997). Foram examinados os 

efeitos físicos produzidos pelas interações e os impactos da excentricidade do furo 

nestes efeitos. Foram objeto de interesse particular combinações de furos de diversas 

excentricidades e tamanhos com forte interação, já que tipicamente há poros ou 

microfissuras em materiais estruturais. Os impactos foram examinados em um 

modelo de orifícios elípticos, incluindo orifícios circulares e fissuras nos casos 

limite. Utilizando o método de alternância de Neumann-Schwarz, as interações 

foram estudadas de modo a tratar das seguintes questões: impacto da excentricidade 

dos furos nos efeitos de interação; interações entre furo grande e furo pequeno 

(como, por exemplo, a Figura 10); e padrões prováveis de microfratura em 

combinações de defeitos de diversas formas (Tsukrov & Kachanov, 1997). 
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Figura 10 – Padrões prováveis de microfratura para (a) fissura e microfuro; (b) furo grande e 

microfuros de várias formas; (c) furo alongado e microfuros a pequenas distâncias; (d) furo 

alongado com microfuros a longas distâncias. As flechas mostram a direção provável de 

propagação de fratura (Tsukrov & Kachanov, 1997) 

As interações entre furos podem tanto amplificar quanto atenuar tensões, dependendo 

da posição entre os furos, suas excentricidades e o modo de carregamento remoto. 

Padrões de concentração de tensão em tais combinações de furos implicam certos 

padrões de microfratura em materiais com múltiplos defeitos. Foi observado que os 

efeitos de interação entre furos (amplificando as tensões) são maximizados em 

configurações onde a simetria é levemente perturbada (Tsukrov & Kachanov, 1997). 

 

2.2.8 Integrais independentes do trajeto: Integral 𝑱 

A integral independente do trajeto 𝐽 da mecânica da fratura está relacionada às taxas 

de dissipação de energia associadas a movimentos uniformes, rotação ou expansão 

de cavidades ou fissuras em materiais com elasticidade linear ou não. Formas de 

variáveis complexas foram apresentadas por Budiansky e Rice (1973) para as leis de 

conservação em casos de elasticidade linear isotrópica em estado plano de tensão. 
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Deste modo, para uma deformação bidimensional, a integral 𝐽, definida pela primeira 

componente do vetor da eq.( 3 ), em que 𝑢 é o vetor dos deslocamentos, 𝐶 é a curva 

fechada no plano 𝑥1 𝑥2, 𝑊 é a densidade de energia e 𝑇 o vetor de tensões atuantes 

no lado externo de 𝐶 com versor normal 𝑛, possui o mesmo valor – não 

necessariamente zero – para todos os trajetos que circundam um furo ou fissura 

(Figura 11). As eqs.( 4 ) e ( 5 ) descrevem as integrais de Knowles-Sternberg no caso 

bidimensional, em que ∈𝑖𝑗𝑘 é o tensor de alternância. Sob as mesmas condições de 𝐽, 

𝐿 torna-se zero. Para 𝑀 se tornar zero, é necessário que 𝑊 seja uma função 

quadrática (Budiansky & Rice, 1973). 

𝐽𝑘 = ∮ (𝑊𝑛𝑘 − 𝑇𝑖𝑢𝑖,𝑘)
𝐶

𝑑𝑙 
( 3 ) 

𝐿 = ∮ ∈3𝑖𝑗 (𝑊𝑥𝑗𝑛𝑖 + 𝑇𝑖𝑢𝑗 − 𝑇𝑘𝑢𝑘,𝑖𝑥𝑗)
𝐶

𝑑𝑙 
( 4 ) 

𝑀 = ∮ (𝑊𝑥𝑖𝑛𝑖 − 𝑇𝑘𝑢𝑘,𝑖𝑥𝑖)
𝐶

𝑑𝑙 
( 5 ) 

 

Figura 11 – Um contorno envolvente de um defeito ilustrando a integral independente do trajeto 

(Honein, Honein, & Hernnmann, 2000) 

Utilizando a solução para duas inclusões circulares elásticas sob tensão de 

cisalhamento, Honein, Honein e Herrmann (2000) avaliaram as forças no material. 

Elas podem ser definidas como mudanças energéticas (por exemplo, taxas de 

dissipação de energia) acompanhando translação unitária, expansão e rotação de 

inclusões. O vínculo entre as inclusões e a matriz foi assumido como perfeito e os 

cálculos foram executados usando o conceito das integrais independentes do trajeto 
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𝐽, 𝑀 e 𝐿. Os resultados obtidos são válidos para carregamentos arbitrários. Estes 

resultados foram exemplificados no caso de uma chapa sob tensão uniforme de 

cisalhamento com dois orifícios circulares: eles atraíram um ao outro e as integrais 𝐽 

e 𝑀 cresceram sem limite quando os orifícios se tornaram infinitamente próximos. 

Uma análise cuidadosa da expressão destas integrais resultou que as integrais 𝐽 e 𝑀 

tendem ao infinito proporcionalmente a 1 √∈⁄ , onde ∈ é a distância adimensional 

entre os orifícios (como ilustrado na Figura 12). Foi também notado que a integral 𝐽 

decai rapidamente a zero quando os orifícios situam-se a uma distância de quatro ou 

cinco raios. Foram considerados e discutidos outros exemplos com dois orifícios 

circulares e inclusões para vários campos de carregamentos. Notou-se que, com 

variação da tensão de cisalhamento remota, as forças no material podem ser atrativas 

ou repulsivas, dependendo da distância de separação entre os orifícios. (Honein, 

Honein, & Hernnmann, 2000). 

 

Figura 12 – Gráfico de 𝑴∗, a integral adimensional 𝑴, como função da distância de separação 

𝒅∗ = 𝒅/𝒂𝟏 entre os dois orifícios, com a chapa sob cisalhamento uniforme (Honein, Honein, & 

Hernnmann, 2000) 

2.2.9 Integrais independentes do trajeto: Integral 𝑴 

A integral 𝑀 teve seu conceito expandido por Hu e Chen (2009) para o estudo da 

degradação de uma tira plana frágil causada por evolução irreversível: a coalescência 

entre dois furos sob carregamento crescente. O foco do estudo foi a mudança da 
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integral 𝑀 antes e depois da coalescência de dois furos vizinhos. Foram estudados 

em detalhe diferentes orientações dos dois furos e diferentes trajetos de coalescência 

conectando os bordos destes. Através de uma análise de elementos finitos (Figura 

13), foi constatado que diferentes orientações dos furos levam a diferentes valores 

críticos da integral 𝑀, nos quais a tensão máxima circunferencial (ou seja, a tensão 

ao longo dos bordos de um furo) atinge a resistência do material e a coalescência 

ocorre; além disso, que o valor crítico mínimo da integral 𝑀 corresponde 

aproximadamente ao carregamento crítico mínimo de tensão quando a orientação 

varia. Concluiu-se que a integral 𝑀 desempenha um importante papel na descrição 

da medida da fratura e de sua evolução. Porém, isto apenas fornece algumas 

características variáveis externas. Isto significa que o mecanismo completo de falha 

devido à evolução da fratura não pode ser governado por apenas um parâmetro, e sim 

que há uma relação entre a integral 𝑀 e a redução de módulo de elasticidade efetivo 

quando a orientação muda (quanto maior a integral, maior a redução). É de grande 

significância que a integral 𝑀 está inerentemente relacionada à mudança da energia 

potencial total para a fratura em materiais frágeis independentemente das 

características da fratura e de sua evolução (Hu & Chen, 2009). 

 

Figura 13 – Malhas de elementos finitos antes da coalescência (acima) e após (abaixo) para os 

ângulos de inclinação 11,25º e 22,5º, respectivamente (Hu & Chen, 2009) 

2.2.10 Integrais independentes do trajeto: Integral 𝑳 

O conceito da integral 𝐿 também foi estendido por Hu e Shen (2011) para estudar a 

degradação de um material elástico frágil na coalescência entre dois furos vizinhos 

numa chapa plana sob tensão de tração; eles também estudaram a mudança da 
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integral 𝐿 antes, durante e depois da coalescência. Utilizando análise por elementos 

finitos, estudou-se a influência de diferentes orientações dos dois furos, de trajetos de 

coalescência diferentes conectando os bordos dos dois furos e de diferentes 

comprimentos de trinca entre os bordos dos furos na integral 𝐿. Foi constatado que 

tendências variáveis da integral 𝐿 antes, durante e depois da coalescência de 

diferentes orientações de furo apresenta características muito diferentes. 

Diferentemente da integral 𝐿 para um único defeito, para dois furos antes da 

coalescência ela podia ser positiva ou negativa, representando dissipação ou absorção 

de energia induzida pela rotação dos furos, enquanto que tal característica 

desaparecia após a ocorrência da coalescência dos furos e consequentemente a 

aparição de um defeito complexo único. Concluiu-se que a integral 𝐿 realmente 

desempenha um papel importante da descrição da medida da fratura e de sua 

evolução. Portanto, além da integral 𝑀, a integral 𝐿 é outra característica externa que 

deve ser adotada na descrição da evolução da fratura em materiais frágeis. Desta 

maneira, indica-se que há uma ligação entre as integrais invariantes e a mecânica da 

fratura (Hu & Chen, 2011). 

2.2.11 Outros avanços e aplicações das integrais independentes do trajeto 

A partir de uma revisão de 261 referências, Chen e Lu (2003) puderam observar que 

novas aplicações para as integrais independentes do trajeto foram identificadas, 

focando em quatro áreas de aplicação: i) fratura mecânica de materiais funcionais 

(por exemplo, cerâmicas piezoelétricas e ferromagnetos), que exibem propriedades 

diferentes daquelas encontradas em problemas puramente mecânicos devido ao 

acoplamento com efeitos elétricos, magnéticos e térmicos; ii) danos mecânicos em 

trincas múltiplas interativas, assim como suas novas medições de fratura; iii) 

integrais de domínio, integrais de dois estados e suas aplicações em determinados 

parâmetros dominantes nas trincas tridimensionais e o esclarecimento do papel de 

termos singulares de ordem elevada nas expansões das funções principais de William 

e iv) nanoestruturas (Chen & Lu, 2003). 

Dentre outras várias conclusões, Chen e Lu (2003) constataram que os papéis 

desempenhados pelas integrais invariantes na fratura de materiais funcionais (como 

por exemplo, piezoelétricos) são bem diferentes daqueles em materiais puramente 
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mecânicos. Apesar da diferença entre comportamentos mecânicos e elétricos, é 

possível tratar ambos de maneira semelhante utilizando o conceito de tensões 

generalizadas e novas leis de conservação de 𝐽𝑘 foram estabelecidas para estes 

materiais com microtrincas. Além da conhecida teoria da mecânica da fratura, a 

integral 𝑀 fornece uma nova e mais objetiva descrição do dano por microtrincas: ela 

representa a dissipação de energia devido às microtrincas e, deste modo, pode ser 

utilizada como medida quantitativa de dano. Por fim, a relação simples entre as 

integrais 𝐿 e 𝑀 se mantém até para fortes interações de múltiplas trincas. Assim, 

estas duas integrais não são independentes, mas representam duas taxas diferentes de 

dissipação de energia (Chen & Lu, 2003). 
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3 MATERIAIS E MÉTODOS 

 

Aqui serão descritos, além de outras ferramentas necessárias, os programas a serem 

utilizados na execução deste Trabalho de Conclusão de Curso, a saber: 

Tabela 1 – Relação de programas a serem utilizados 

Análise analítico numérica Análise numérica 

Maple Patran e Nastran 

 

3.1 Configurações dos estudos de caso 

Nesta seção serão definidas as configurações de alguns casos para análise. O material 

será definido como comum a todos e haverá variação de certos parâmetros. De modo 

a possibilitar comparação com a literatura, os seguintes parâmetros serão utilizados 

tanto na abordagem analítica quanto na numérica, para uma análise preliminar: 

 Parâmetros do material 

o 𝐸 = 210 𝐺𝑃𝑎 – Módulo de Elasticidade 

o 𝜈 = 0,3 – Coeficiente de Poisson 

 Parâmetros geométricos dos furos 

o 𝑟1 = 15,5 𝑚𝑚 – Raio do primeiro orifício circular 

o 𝑟2 = 18,5 𝑚𝑚 – Raio do segundo orifício circular 

o 𝑑 = 44 𝑚𝑚 – Distância entre os centros dos furos 

 Carregamento nos bordos da chapa 

o 𝜎11
∞ = 1 – Tensão transversal 

o 𝜎22
∞ = 1 – Tensão longitudinal 

o 𝜏12
∞ = 0 – Tensão de cisalhamento 

 Carregamento no interior dos furos 

o 𝑝1 = 0 – Pressão no primeiro orifício 

o 𝑝2 = 0 – Pressão no segundo orifício 
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Em seguida variar-se-ão parâmetros como: carregamentos externos (tensões 

transversal, longitudinal e de cisalhamento), pressões no interior dos orifícios, 

tamanhos dos raios destes. E, por fim, será realizada uma análise no caso de furos em 

posição relativa arbitrária. 

 

3.2 Método analítico-numérico 

O presente trabalho seguirá o modelo proposto por Radi (2011) com as devidas 

modificações. As suas deduções e referências serão mantidas de modo a explicitar o 

raciocínio adotado. Em seguida, será mostrado o programa implementado, utilizando 

as soluções deduzidas, para o cálculo das tensões e fatores de concentração de tensão 

almejados. 

 

3.2.1 Descrição do problema em coordenadas bipolares 

O problema é composto por dois orifícios circulares dispostos, inicialmente, lado a 

lado em uma chapa infinita, sob estado plano de tensões. Os dois furos são descritos 

pelos seus raios internos 𝑟1 e 𝑟2, enquanto que a posição relativa entre eles é descrita 

pela distância 𝑑 entre seus centros, conforme ilustra a Figura 14. Além dos 

carregamentos externos (tensões de tração e cisalhamento), podem existir pressões 

internas em cada furo. 

 

Figura 14 – Sistema de coordenadas bipolares para o problema de dois furos diferentes de raios 

𝐫𝟏 e 𝐫𝟐, com pressões internas 𝐩𝟏 e 𝐩𝟐 e tensões normais uniformes 𝛔𝟏𝟏
∞  e 𝛔𝟐𝟐

∞  e de cisalhamento 

𝛕𝟏𝟐
∞  aplicadas no infinito (Radi E. , 2011) 
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As coordenadas cartesianas (𝑥1, 𝑥2) são transformadas em coordenadas bipolares 

(𝛼, 𝛽) conforme Jeffery (1921), definindo uma relação entre os planos complexos 

𝑧 = 𝑥1 + 𝑖𝑥2 e 𝜔 = 𝛼 − 𝑖𝛽, conforme a eq.( 6 ). 

𝑧 = acoth (
𝜔

2
) = 𝑎 ∙

𝑒𝜔+1

𝑒𝜔−1
     𝜔 = 𝑙𝑛 (

𝑧+𝑎

𝑧−𝑎
)  

( 6 ) 

Através das relações entre as variáveis complexas 𝑧 e 𝜔, é imediato obter as relações 

abaixo: 

𝑥1 =
𝑎∙sinh (𝛼)

cosh(𝛼)−cos (𝛽)
     𝑥2 =

𝑎∙sin (𝛽)

cosh(𝛼)−cos (𝛽)
  ( 7 ) 

E também: 

𝑒𝛼 sin(𝛽) =
2𝑎𝑥2

(𝑥1−𝑎)2+𝑥2
2      𝑒𝛼 cos(𝛽) =

𝑥1
2+𝑥2

2−𝑎2

(𝑥1−𝑎)2+𝑥2
2  

( 8 ) 

De onde, através da eliminação de β das eqs.( 8 ), obtém-se a eq.( 9 ) que descreve 

uma família de círculos coaxiais com centros no eixo 𝑥1 a uma distância 𝑎 ∙ coth (𝛼) 

da origem e raio 𝑎 sinh (𝛼)⁄ . 

 ( 9 ) 

E, com a eliminação de α das eqs.( 7 ), obtém-se a eq.( 10 ) que descreve uma nova 

família de círculos coaxiais com centros no eixo 𝑥2 a uma distância 𝑎/𝑡𝑔(𝛽) da 

origem e de raio 𝑎/|sin (𝛽)|: 

𝑥1
2 + (𝑥2 −

𝑎

𝑡𝑔(𝛽)
)

2

= (
𝑎

sin (𝛽)
)

2

  ( 10 ) 

Todos os parâmetros geométricos podem ser definidos em termos dos raios dos furos 

e a distância entre os centros dos furos. As superfícies dos furos circulares são 

definidas pela adoção de um valor constante para a coordenada 𝛼, ou seja, quando 

𝛼 = 𝛼1 > 0 e 𝛼 = 𝛼2 < 0, como explicitado na Eq.( 11 ). Na Eq. ( 12 ) também são 

mostradas a posição dos polos (𝑎) e a distância entre os bordos dos furos (𝛿). 

      ( 11 ) 
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      ( 12 ) 

Quanto ao ângulo polar 𝜃, este é definido para um valor constante de 𝛼 e é associado 

com a coordenada bipolar 𝛽 pelas relações da eq.( 13 ). 

      
( 13 ) 

 

3.2.2 Campos de tensão fundamental e auxiliar 

O problema foi formulado utilizando as funções de tensão de Airy 𝜒(𝑥1, 𝑥2) que, 

conforme Jeffery (1921), devem satisfazer à equação biharmônica ΔΔ𝜒, isto é, em 

coordenadas bipolares: 

 

 
( 14 ) 

E, portanto, as tensões são dadas pelas equações: 

 

 

 

( 15 ) 

Mas, utilizando o princípio da superposição, a função de tensão de Airy pode ser 

decomposta na soma de uma função de tensão fundamental 𝜒(0) – que corresponde à 

tensão uniforme aplicada no infinito – e uma função de tensão auxiliar 𝜒(1) – 

responsável por satisfazer as condições de contorno nos bordos do furo, mas que se 

esvaem no infinito. A partir dos carregamentos externos aplicados no infinito, a 

função de tensão fundamental pode ser descrita em coordenadas bipolares conforme 

a eq.( 18 ), a seguir, pois: 
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𝜒(0) = −𝜏12
∞ 𝑥1𝑥2 +

1

2
𝜎11

∞𝑥2
2 +

1

2
𝜎22

∞𝑥1
2   

 

( 16 )
1
 

É igual a 

𝜒(0) = [
𝜎11

∞ 𝑠𝑖𝑛2(𝛽)+𝜎22
∞ 𝑠𝑖𝑛ℎ2(𝛼)−2𝜏12

∞ sin (𝛽)sinh (𝛼)

(cosh(𝛼)−cos (𝛽))2
]

𝑎2

2
  ( 17 )

2
 

E resulta 

ℎ𝜒
(0) =

𝜎11
∞ 𝑠𝑖𝑛2(𝛽)+𝜎22

∞𝑠𝑖𝑛ℎ2(𝛼)−2𝜏12
∞ sin (𝛽)sinh (𝛼)

2(cosh(𝛼)−cos (𝛽))
  ( 18 ) 

Deste modo, deduzem-se as tensões fundamentais: 

 

           

           

 

           

           

 

 

 

( 19 ) 

Em relação às tensões auxiliares, Jeffery (1921) deduziu não só a função de tensão 

auxiliar correspondente (eq.( 20 )), mas também as tensões auxiliares em função de 

várias constantes, conforme mostrado a seguir. 

 

          
( 20 ) 

                                                 
1
 Fórmula corrigida: em Radi (2011), a última parcela continha índice 2, enquanto que o correto é o 

apresentado (índice 1). 
2
 Fórmula corrigida: em Radi (2011), faltou elevar ao quadrado o termo do denominador. 
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Onde 

 

 

 

       

 

        

( 21 ) 

para 𝑛 ≥ 2. Com as constantes 𝐵, 𝐾,  𝐴1,  𝐵1,  𝐶1,  𝑎1,  𝑐1,  𝐴𝑛,  𝐵𝑛,  𝐶𝑛,  𝐷𝑛,  𝑎𝑛, 

 𝑏𝑛,  𝑐𝑛,  𝑑𝑛 a serem determinadas pelas condições de contorno, temos as 

componentes de tensão derivadas da função de tensão de Airy auxiliar: 

 

           

           

           

           

          

 

           

           

           

           

           

 

           

( 22 ) 
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3.2.3 Expansão da tensão em séries de Fourier 

Utilizando o resultado obtido por Ling (1948) para a integral da eq.( 23 ), Radi 

(2011) pôde obter o campo de tensões fundamentais expandidos em séries de Fourier 

com 𝛽 variando de −𝜋 a 𝜋, conforme a eq.( 24 ). 

 
( 23 ) 

 

 

 

( 24 ) 

Onde 

      

 

 

       

( 25 ) 

para n ≥ 1. Onde: 

 ( 26 ) 

Assim, somando as tensões fundamentais e as auxiliares, as trações totais nos bordos 

dos orifícios circulares (onde 𝛼 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒; 𝛼1 𝑜𝑢 𝛼2) podem ser obtidas, como 

descrito por Radi (2011) (eqs.( 27 ) e ( 28 )) e por Jeffery (1921).  

 

        

        

        

 

( 27 ) 
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Onde 

      

                            
( 28 ) 

3.2.4 Imposição das condições de contorno 

O campo de tensões deve atender às condições em duas áreas principais: 

i) No infinito 

ii) Nos bordos dos orifícios 

O campo de tensões gerado pela função de tensão fundamental proporciona, no 

infinito, os carregamentos aplicados. Ao mesmo tempo, a função de tensão auxiliar 

deve extinguir-se no infinito. Deste modo, como já mostrado por Jeffery (1921), a 

eq.( 29 ) deve ser satisfeita. 

 ( 29 ) 

Para os bordos dos orifícios circulares, a tensão total deve ser igual às pressões 

internas em cada furo, isto é, 𝑝1 no primeiro furo e 𝑝2 no segundo furo. Ou seja: 

     , para 𝛼 = 𝛼1, 𝛼2 
( 30 ) 

Mas, com o auxílio de ( 27 ) aplicado em ( 30 ), podemos exigir que os termos do 

tipo 𝑠𝑒𝑛(𝑛𝛽) e 𝑐𝑜𝑠(𝑛𝛽) sejam eliminados para 𝑛 = 0, 1, 2 …. Em particular, 

desaparecendo com os termos constantes (𝑛 = 0), obtém-se, para 𝛼 = 𝛼1 e 𝛼 = 𝛼2: 

 

Ψ1
′(𝛼) = 2 ∙ 𝜏12

∞ ∙ 𝑒−2∙|𝛼| 
( 31 ) 
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Além disso, eliminando os termos com 𝑠𝑒𝑛(𝑛𝛽) e 𝑐𝑜𝑠(𝑛𝛽) na eq.( 30 ), para 𝑛 ≥ 1, 

são obtidas as equações a seguir, onde 𝛿𝑛𝑘 é o Delta de Kronecker. 

 

       

 

 

( 32 ) 

 ( 33 ) 

Aplicando, em ( 33 ), uma multiplicação por 𝑒−𝑛|𝛼| e somando para 𝑛 = 1 … ∞, tem-

se: 

 ( 34 ) 

Se a eq.( 33 ) é multiplicada por 𝑠𝑒𝑛ℎ(𝑚 − 𝑛)𝛼, para 𝑚 ≥ 2, fazendo-se a soma 

com 𝑛 = 1 … 𝑚 − 1, utilizando ( 25 ) e ( 34 ), obtém-se: 

 

         

( 35 ) 

Cabe ressaltar que as séries apresentadas em ( 34 ) e ( 35 ) convergem para valores 

apresentados nas equações ( 36 ) e ( 37 ), reduzindo as equações ( 34 ) e ( 35 ) às 

formas apresentadas em ( 38 ) e ( 39 ): 

 ( 36 ) 

 ( 37 ) 

 ( 38 ) 

 ( 39 ) 

De modo análogo, pode-se multiplicar as eqs.( 32 ) por 𝑠𝑒𝑛ℎ(𝑚 − 𝑛)𝛼, para 𝑚 ≥ 2, 

e efetuar a soma com 𝑛 = 1 … 𝑚 − 1, utilizando as eqs.( 25 ), ( 31 ), ( 36 ) e ( 39 ), o 
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que leva às equações ( 40 ) e ( 41 ), cuja série apresentada em ( 42 ) pode ser 

simplificada, levando ao resultado apresentado em ( 43 ). 

⋅ 

         
( 40 ) 

 ( 41 ) 

 ( 42 ) 

 ( 43 ) 

Do mesmo modo a equação ( 32 ) pode ser multiplicada por 𝑠𝑒𝑛ℎ(𝑚 − 𝑛)𝛼, para 

𝑚 ≥ 2 e somada com 𝑛 = 1 … 𝑚 − 1, usando ( 25 ), ( 41 ) e ( 42 ), o que resulta 

(Radi E. , 2011): 

 ( 44 ) 

3.2.5 Determinação das constantes desconhecidas 

Vários termos podem ser expressos em função da constante 𝐾. Caso esta seja 

calculada, é possível determinar as constantes 𝐴1,  𝐵1,  𝐶1 e 𝐵 através da imposição 

das condições ( 31 ) e ( 38 ) nas funções 𝜙1(𝛼) e 𝜙1
, (𝛼) em 𝛼 = 𝛼1 e 𝛼 = 𝛼2. Deste 

modo, usando ( 28 ) e ( 21 ), obtém-se: 

 

         

 

( 45 ) 

Que, caso seja avaliada nos valores constantes de 𝛼 explicitados, as seguintes 

constantes são determinadas: 
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( 46 ) 

Onde 

 

 

 

( 47 ) 

A partir da condição ( 31 ) pode-se determinar as constantes 𝑎1 e 𝑐1 utilizando as 

funções 𝜙1(𝛼) e 𝜓1
, (𝛼) em 𝛼 = 𝛼1 e 𝛼 = 𝛼2. Usando ( 21 ), obtém-se: 

 ( 48 ) 

Portanto, da eq.( 48 ), avaliada em 𝛼1 e em 𝛼2, resultam: 

 

 

( 49 ) 

A introdução de ( 21 ) em ( 28 ) leva a: 

 

( 50 ) 
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Do mesmo modo, utilizando as eqs.( 43 ) e ( 39 ), pode-se determinar as constantes 

𝐴𝑛,  𝐵𝑛,  𝐶𝑛,  𝐷𝑛 para 𝑛 ≥ 2 através do sistema de equações formada por ( 50 ) 

avaliadas em 𝛼 = 𝛼1 e 𝛼 = 𝛼2, a saber: 

 

         

 

         

 

        

 

         

( 51 ) 

Onde Φ𝑛(𝛼) e Φ𝑛
∗ (𝛼) são dados pelas eqs.( 43 ) e ( 39 ), respectivamente, e 

 

 

 

 

 

( 52 ) 

Aplicando a eq.( 21 ) na ( 28 ), tem-se: 

 

( 53 ) 
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Utilizando as eqs.( 44 ) e ( 41 ), as constantes 𝑎𝑛,  𝑏𝑛 ,  𝑐𝑛,  𝑑𝑛 para 𝑛 ≥ 2 podem ser 

determinadas para o sistema formado pelas equações ( 53 ) avaliado em 𝛼 = 𝛼1 e 

𝛼 = 𝛼2, levando aos seguintes valores:  

 

       

 

       

 

       

       

 

 

( 54 ) 

Onde Ψ𝑛(𝛼) e Ψ𝑛
∗(𝛼) são dados por ( 44 ) e ( 45 ). 

Finalmente, a constante 𝐾é obtida através da condição mostrada na eq.( 29 ) após a 

introdução das constantes 𝐴𝑛 e 𝐵𝑛 para 𝑛 ≥ 1, determinados em ( 46 ) e ( 51 ). 

 

3.3 Método numérico 

Nesta seção será exposta a metodologia de utilização do programa e do método de 

elementos finitos, assim como os parâmetros, condições de contorno e métodos 

numéricos utilizados. Serão descritos os tipos de elementos a serem usados (para o 

Estado Plano de Tensão), assim como suas características (geometria, disposição dos 

nós) e a malha utilizada. 
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3.3.1 Teste do programa: exemplo de Kirsch 

Para aprendizado da ferramenta e demonstração de equivalência entre o método de 

elementos finitos e o analítico proposto por Kirsch (chapa infinita com um furo, sob 

carregamento uniaxial e pressão interna), foi desenvolvido um problema 

simplificado, cujos resultados serão apresentados posteriormente. 

Tais resultados serão comparados com a solução analítica: 

                 

 
( 55 ) 

   

3.3.2 Casos estudados 

Os 11 casos estudados – que se referem às Figuras 8 e 9 de Radi (2011) – são 

apresentados na Tabela 2 a seguir (onde são mostrados os raios e a distância entre os 

centros dos furos, em mm, as pressões internas em MPa e a posição do centro dos 

furos, 𝑥𝑐1 e 𝑥𝑐2, também em mm, baseada na Figura 15). O objetivo de Radi, 

utilizando a formulação analítica, foi a de variar a aplicação da pressão interna (em 

um furo ou no outro – casos 8a e 8b), a posição relativa horizontal entre os furos 

(9aa, 9ab, 9ac, 9ad) e a relação de tamanhos entre eles (9ba, 9bb, 9bc, 9bc, 9bd, 9be). 

Nestes casos, os furos encontram-se alinhados horizontalmente. 

Tabela 2 – Primeiro grupo de simulações, relativo às Figuras 8 e 9 de Radi (2011) 

Figura 𝒓𝟐 𝒓𝟏 𝒅 𝒑𝟐 𝒑𝟏 𝒙𝒄𝟐 𝒙𝒄𝟏 

8a 18,5 15,5 44 
 

1 979,5 1023,5 

8b 18,5 15,5 44 1 
 

979,5 1023,5 

9aa 7,75 15,5 54,25 
 

1 969 1023,25 

9ab 7,75 15,5 38,75 
 

1 976,75 1015,5 

9ac 7,75 15,5 31 
 

1 980,625 1011,625 

9ad 7,75 15,5 26,35 
 

1 982,95 1009,3 

9ba 77,5 15,5 108,5 
 

1 976,75 1085,25 

9bb 31 15,5 62 
 

1 976,75 1038,75 

9bc 15,5 15,5 46,5 
 

1 976,75 1023,25 

9bd 7,75 15,5 38,75 
 

1 976,75 1015,5 

9be 3,1 15,5 34,1 
 

1 976,75 1010,85 
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3.3.3 Geometria 

Como uma geometria de chapa infinita é impossível de ser realizada em um 

programa numérico, foi criada uma chapa quadrada com largura de 2000 mm. Tal 

formato levava, no pior dos casos (furo com raio 𝑟2 = 77,5 𝑚𝑚), a uma relação 

diâmetro por lateral da chapa de 7,75%. Na grande maioria das simulações, a relação 

foi mantida menor que 2% (para furos com 18,5 e 15,5 mm de raio, por exemplo). 

É interessante notar que, para os casos de carregamento uniaxial, biaxial e/ou com 

pressão interna, a estrutura apresenta simetria, quando os furos encontram-se 

alinhados horizontalmente. Deste modo, apenas meia chapa pode ser simulada, 

garantindo equivalência dos resultados para uma chapa inteira (Figura 15). 

 

Figura 15 – Exemplo de configuração simétrica simulada em elementos finitos 

Nos casos em que os furos possuem posição relativa variada (verticalmente, 

conforme um ângulo com a horizontal) ou que haja carregamento de cisalhamento 

nos bordos da chapa, a estrutura não apresenta simetria e por isso a chapa inteira 

deve ser simulada (Figura 16). Cabe ressaltar que o carregamento biaxial é 

decomposto em tensões de tração/compressão e cisalhamento, de modo a manter na 

horizontal o eixo que liga o centro dos furos (antes inclinada de um ângulo ζ). A 

fórmula utilizada para o cálculo destes carregamentos provém de Radi (2011): 

 ( 56 ) 

x 

y 
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Figura 16 – Exemplo de configuração não simétrica simulada em elementos finitos 

3.3.4 Malha 

A região a ser simulada foi separada em quatro regiões, no caso de simetria, e cinco, 

quando esta não ocorria: uma região com malha refinada nas proximidades dos furos 

(região I), e outras regiões circundantes (II, III e IV) com malha cada vez mais 

grosseira até atingir os bordos da chapa (Figura 17). 

 

Figura 17 – Malha: delimitação das regiões com refinamento diferenciado 

Nos bordos dos furos, foram criados nós com distribuição uniforme de 1 em 1 mm 

(MeshSeed), e uma distribuição variável de 1 a 2 mm até os contornos desta região 

dos furos. Foi criada uma malha não estruturada que possuía elementos quadriláteros 

(Quad4) de, 2 mm de largura. 

Já os contornos das regiões circundantes, uma distribuição variável de nós foi criada, 

com espaçamento inicial de 2 mm (bordos da região refinada) e final de 10 mm 

(bordos da chapa). Nestas regiões optou-se pela criação de malha estruturada com 

elementos com 10 mm de largura. 

ζ 
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Deste modo obteve-se a malha mostrada na Figura 18, em uma configuração de 

exemplo (teste preliminar de Kirsch com pressão interna). 

 

Figura 18 – Malha completa com refinamento diferenciado 

3.3.5 Propriedades 

O material especificado foi adotado conforme Radi (2011). Desde modo, o material 

possuía módulo de elasticidade 𝐸 = 210 𝐺𝑃𝑎 e coeficiente de Poisson 𝜈 = 0,3. 

Por se tratar de um caso de Estado Plano de Tensões (duas dimensões), poderiam ser 

utilizados elementos de casca, membrana ou sólidos 2D, por exemplo. O ideal seria 

utilizar o elemento do tipo 2D Solid, em que era possível escolher o Estado Plano de 

Tensões, mas, por dificuldade de extrair dados, foram utilizados elementos de 

membrana, que também se enquadram no caso estudado. 

3.3.6 Condições de contorno e carregamentos 

Como citado anteriormente, há casos de simetria em que a geometria pode ser 

dividida ao meio para a análise. Este procedimento requer a criação de condições de 

contorno compatíveis com o fenômeno físico atrelado. Para o caso estudado, a 

simetria no plano horizontal é bem representada por um apoio simples no bordo 

horizontal inferior. Ou seja, os elementos deste contorno podem ter deslocamentos na 

direção x, mas não em y. Adicionalmente, para limitar o movimento de corpo rígido, 

um dos nós deve ser engastado para evitar translação em x. Tais considerações 

podem ser vistas facilmente na Figura 15 já apresentada. 
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Os carregamentos foram aplicados utilizando da função pressão (pressure). Nesta, 

uma pressão é aplicada na direção normal às faces dos elementos escolhidos. Pode 

ser utilizada tanto para aplicar as tensões nos bordos da chapa (σ11
∞  e σ22

∞ ), tanto para 

aplicar as pressões internas nos furos (p1 e p2) (Figura 19). 

 

Figura 19 – Aplicação de pressão interna em um furo 

3.3.7 Extração e processamento de dados 

De modo a obter a tensão circunferencial em cada nó nos bordos dos furos, é 

necessário conhecer as componentes de tensão 𝜎𝑥, 𝜎𝑦 e 𝜏𝑥𝑦 e as coordenadas da 

posição (𝑥, 𝑦) do nó em questão. Estes dados podem ser extraídos do Patran através 

da função Results  Report  Overwrite File, em que um arquivo com extensão txt 

é criado. É necessário, para tanto, selecionar os nós de interesse. Em seguida, os 

dados devem ser processados por meio de Excel, utilizando as seguintes fórmulas: 

𝜃 = arccos (
(𝑥 − 𝑥𝑐)

𝑟
) 

𝜎𝜃 = 𝜎𝑥 ∙ 𝑠𝑒𝑛(𝜃)2 + 𝜎𝑦 ∙ cos(𝜃)2 − 𝜏𝑥𝑦 ∙ 𝑠𝑒𝑛(2𝜃) 

( 57 ) 

Estas fórmulas provém da rotação do tensor das tensões para encontrar a tensão em 

coordenadas cilíndricas (Apêndice 1) e na dedução geométrica para encontrar o 

ângulo 𝜃 a partir dos dados extraídos (Figura 20). 

 

Figura 20 – Esquemas para a determinação do ângulo 𝜽 nos furos 1 (à direita) e 2 (à esquerda) 
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4 RESULTADOS 

Objetiva-se obter gráficos da tensão circunferencial nos bordos dos orifícios em 

função do ângulo destes através dos dois métodos apresentados (analítico e 

numérico) a fim de proporcionar uma comparação entre ambas as metodologias. 

4.1 Método analítico 

A tensão radial é obtida através da soma entre a tensão fundamental e a auxiliar. 

Desta maneira, foram utilizadas as fórmulas explicitadas na Figura 21 para o seu 

cálculo. 

 

Figura 21 – Fluxograma do cálculo das tensões radiais 

A partir das fórmulas correspondentes para cada termo da fórmula final, nota-se uma 

complexidade para o cálculo de 𝐾, 𝛽. Tais cálculos serão tratados com mais cuidado 

nos tópicos seguintes. Além destes, há termos que podem facilmente calculados a 

partir de uma ou duas fórmulas apenas, conforme deduzido por Radi (2011). 

Já os termos 𝜙1, 𝜙𝑛, 𝜓1 e 𝜓𝑛 possuem complexidade na implementação, devido à 

grande quantidade de fórmulas e funções atreladas. Estes parâmetros dependentes da 

coordenada curvilínea 𝛼 podem ser determinados com o auxílio das fórmulas 

mostradas nos fluxogramas das Figuras 22 e 23. 
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Figura 22 – Fluxograma do cálculo de 𝝓𝟏 e 𝝓𝒏 

 

Figura 23 – Fluxograma do cálculo de 𝝍𝟏 e 𝝍𝒏 

Analogamente, o cálculo da tensão cisalhante 𝜏𝛽𝛼 é mostrado no fluxograma da 

Figura 24. Nota-se que vários termos podem ser aproveitados em comparação com o 

cálculo da tensão radial. 
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Figura 24 – Fluxograma do cálculo das tensões cisalhantes 

E, da mesma maneira, a fórmula para o cálculo da tensão circunferencial 𝜎𝛽 pode ser 

vista no fluxograma da Figura 25. 

 

Figura 25 – Fluxograma do cálculo das tensões circunferenciais 

Cabe ressaltar que a implementação para o cálculo destas tensões está apresentada no 

Anexo 3. 
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4.1.1 Determinação de 𝑲 

O coeficiente 𝐾 varia conforme a configuração escolhida e valores de parâmetros 

geométricos. Conforme o fluxograma da Figura 26 pode-se ver quais fórmulas foram 

utilizadas para a obtenção deste coeficiente. 

 

Figura 26 – Fluxograma do cálculo do parâmetro 𝐊 

Como se pode ver no Anexo 1, um programa foi criado na plataforma Maple para a 

determinação do coeficiente. Cabe ressaltar que a somatória da eq.( 29 ) teve seu 

limite superior mudado de infinito para 100, de modo a ser possível o cálculo do 

somatório no programa. Foi observado empiricamente que, utilizando um valor para 

𝑛 de aproximadamente 10 já era suficiente para a convergência e a estagnação do 

somatório, conforme observado na Figura 27 a seguir. 

 

Figura 27 – Gráfico da variação de 𝐊 com a mudança do limite superior do somatório, para 

uma configuração de exemplo 
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Deste modo, considerando parâmetros variados de 𝑟1, 𝑟2, 𝑑, 𝜎11
∞, 𝜎22

∞ , 𝜏12
∞ , 𝑝1 e 𝑝2, 

podem ser calculados valores de 𝐾 quando o limite do somatório é limitado a cem. 

4.1.2 Determinação de 𝜷 

Para o cálculo das tensões circunferencial e radial, é imperativa a determinação da 

coordenada curvilínea 𝛽 em função do ângulo 𝜃. Deste modo, para o furo 1, 

utilizando as relações obtidas na eq.( 13 ), pode-se facilmente isolar a variável 𝛽 e 

encontrar uma fórmula para esta coordenada (Anexo 2): 

 ( 58 ) 

Além disso, através de um gráfico ilustrativo (Figura 28), observa-se que o valor de 

𝛽 deve ser negativo para valores de θ menores que 0 (zero) de modo a considerar o 

lado inferior do furo. 

 

Figura 28 – Gráfico da variação de 𝛃 em função de 𝛉 

Foi notado que esta coordenada assemelha-se a um arco capaz, isto é, o local 

geométrico em que todos os pontos do círculo passante pelos pontos 𝑎 e −𝑎 possuem 

mesmo ângulo com relação a estes pontos. Assim, o orifício pode ser descrito pela 

variação de 𝛽, ponto a ponto, como uma família de círculos com raios variados, 

conforme Figura 29. 
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Figura 29 – Visão geométrica da coordenada 𝛃 

Assim, deduziu-se uma fórmula para um 𝛽 geométrico, isto é, para o caso de 𝛽 

representar um arco capaz com base nos pontos 𝑎 e – 𝑎, como visto nas Figuras 30 e 

31 a seguir e nas fórmulas de ( 59 ), para o primeiro furo. 

 

Figura 30 – Coordenada 𝛃 como arco capaz e outros ângulos relevantes 

 

Figura 31 – Coordenada 𝛃 como arco capaz, ângulos e medidas relevantes 
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( 59 ) 

Para a obtenção desta fórmula, foi utilizada a distância do centro do furo à origem. É 

possível deduzir que: 

 
( 60 ) 

Foi observado que o resultado encontrado através da dedução por arco capaz é bem 

representativo para a coordenada em questão (Figura 32). 

 

Figura 32 – Gráfico da variação de 𝛃 (dedução por arco capaz) em função de 𝛉 

E, fazendo-se a subtração entre ambas as fórmulas deduzidas, nota-se uma diferença 

irrelevante entre elas, na ordem de 10
-8

, conforme mostrado na Figura 33. Neste 

trabalho, foi utilizada a fórmula baseada na dedução de Radi (2011). A versão 

geométrica foi utilizada apenas para melhor entendimento da coordenada curvilínea. 
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Figura 33 – Gráfico da comparação entre 𝛃 baseado na dedução de Radi (2011) e 𝛃 deduzido 

como arco capaz 

4.1.3 Tensão radial 𝝈𝜶(𝜽) 

Os resultados obtidos para ambos os furos, no que concerne à tensão radial, são os 

mostrados na Figura 34. 

 

Figura 34 – Gráfico de 𝝈𝜶(𝜽) para o primeiro furo (esquerda) e segundo furo (direita) 

Porém, nota-se que os resultados são incompatíveis com a condição de contorno 

dada, em que não há carregamentos radiais nos bordos dos furos. 
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4.1.4 Tensão circunferencial 𝝈𝜷(𝜽) 

A tensão circunferencial também foi calculada e plotada na Figura 35, porém, seus 

resultados não são confiáveis, conforme já explicado no tópico anterior. 

 

Figura 35 – Gráfico de 𝝈𝜷(𝜽) para o primeiro furo (esquerda) e segundo furo (direita) 

4.1.5 Tensão de cisalhamento 𝝉𝜷𝜶(𝜽) 

Analogamente, os resultados obtidos para a tensão de cisalhamento (conforme a 

Figura 36) devem ser futuramente revisados, já que o valor esperado para a tensão de 

cisalhamento nos bordos dos orifícios seria 𝜏𝛽𝛼 = 0. 

 

Figura 36 – Gráfico de 𝝉𝜷𝜶(𝜽) para o primeiro furo (esquerda) e segundo furo (direita) 
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4.1.6 Conferência de fórmulas da bibliografia 

Devido à obtenção de resultados parciais que não condiziam com o esperado (como 

tensões radiais nos bordos dos furos em condição de furos sem pressão interna), 

durante a elaboração deste trabalho, tornou-se imperativo conferir se havia erros de 

dedução ou digitação nas fórmulas propostas por Radi (2011). 

Não foi possível deduzir na totalidade as fórmulas propostas por Radi (2011), no 

tempo deste trabalho de conclusão de curso. As que foram deduzidas serão citadas 

adiante. 

4.1.7 Fórmula da eq.( 22 ) 

Como mostrado anteriormente, as fórmulas para as tensões derivam da eq.( 15 ), em 

primeira instância. Através de comparação com a fórmula de 𝜎𝛽
(1)

, notou-se que 

faltava um parêntesis na fórmula de 𝜎𝛼
(1)

 proposta por Radi (2011). Deste modo, a 

fórmula proposta foi modificada conforme mostrado em vermelho na eq.( 61 ). 

Este resultado, então, foi deduzido novamente conforme a programação do Anexo 4, 

com base na dedução das tensões por Jeffery (1921). Devido à extensão das fórmulas 

e dificuldade algébrica de simplificação destas, optou-se por comparação direta dos 

resultados deduzidos com os propostos por Radi (2011). Tal comparação pode ser 

vista no Anexo 5. Em suma, concluiu-se que ambas as fórmulas (de Radi e a 

novamente deduzida) são praticamente idênticas, já que, para um caso específico, as 

tensões obtidas diferem na ordem de 10−10, conforme mostrado na Figura 37. 

 

           

           

           

           

          

( 61 ) 
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Figura 37 – Gráfico da comparação entre 𝝈𝜶_𝑹𝒂𝒅𝒊

(𝟏)
 e  𝝈𝜶_𝒅𝒆𝒅𝒖𝒛𝒊𝒅𝒐

(𝟏)
, para o furo 1 

É necessário notar que seria mais preciso simplificar as fórmulas e compará-las 

subtraindo uma da outra. Além desta análise, foi observado que esta fórmula é 

conflitante à eq.( 27 ) pela presença do fator 1 2⁄  assinalado na fórmula. Sua 

discussão será vista mais adiante. 

4.1.8 Fórmulas das eqs.( 24 ), ( 25 ) e ( 26 ) 

Com estratégia análoga, foram comparados os resultados obtidos através das tensões 

provenientes da função de tensão fundamental da eq.( 19 ), considerada correta pela 

bibliografia, e os obtidos após a expansão em séries de Fourier da eq.( 24 ). Assim, 

para um carregamento específico, a diferença ficou na ordem de 10−10 (Figura 38), 

mostrando equivalência entre ambas as fórmulas e correta dedução. 

 
Figura 38 – Gráfico da comparação entre 𝝈𝜶_𝒕𝒆𝒏𝒔ã𝒐_𝒇𝒖𝒏𝒅

(𝟎)
 e  𝝈𝜶_𝑭𝒐𝒖𝒓𝒊𝒆𝒓

(𝟎)
, para o furo 1 
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Novamente, o mais indicado seria a dedução completa a partir do auxílio da integral 

definida de Ling (1948) ao executado no Anexo 6. 

4.1.9 Fórmulas da eq.( 27 ) 

Com base na dedução do Anexo 7, notou-se uma incompatibilidade entre a fórmula 

da eq.( 22 ) e a da eq.( 27 ). A eq.( 27 ) difere da eq.( 22 ) por um fator "ERRO" 

descrito no Anexo, no item (iii): 

 

( 62 ) 

Acredita-se que o erro esteja na eq.( 22 ), em que um fator 1 2⁄  foi escrito a mais 

multiplicando o termo com 𝜓𝑛. Suspeita-se, primeiramente, pela falta de paralelismo 

com a função de 𝜎𝛽. Além disso, as deduções das fórmulas seguintes foram baseadas 

na eq.( 27 ) que, tomada como correta, foi aplicada na eq.( 29 ) levando a toda a 

dedução para as condições de contorno. Ou seja, caso faltasse ser multiplicado o 

fator 1 2⁄  na eq.( 27 ), este teria sido notado nas fórmulas conseguintes, o que não foi 

o caso. 

A segunda fórmula da eq.( 27 ) não foi deduzida como a primeira, porém, notou-se a 

presença de um 𝑛 multiplicando o termo 𝑇𝑛. Novamente, trabalhando com a lógica e 

paralelismo entre fórmulas, notou-se que, na primeira fórmula, os termos 𝑆𝑛 e 𝑠𝑛 

eram multiplicados por 𝑛 devido à presença multiplicativa de 1 2𝑛⁄  fora do 

somatório. Já a segunda apresenta a multiplicação do somatório por 1 2⁄ , 

dispensando a multiplicação por 𝑛 deste termo. Além disso, o termo 𝑡𝑛 não é 

multiplicado por este fator, reforçando o argumento. 

Deste modo, a segunda fórmula da eq.( 27 ) foi tomada como correta após retirar o 

termo assinalado na fórmula a seguir. 

 ( 63 ) 
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As próximas deduções foram feitas com esta fórmula corrigida, não apresentando 

problemas em dedução. Ou seja, há coerência nesta correção. 

4.1.10 Imposição das condições de contorno 

A imposição das condições de contorno, como já dito anteriormente, baseia-se em 

equações provenientes de Jeffery (1921) e dos valores das tensões em regiões 

específicas (bordos dos furos). Esta imposição é necessária para o cálculo e 

determinação das constantes desconhecidas e, por isso, foram deduzidas novamente 

para conferência. 

A primeira fórmula da eq.( 31 ) apresentada por Radi (2011) pôde ser deduzida 

facilmente, assim como a segunda fórmula da eq.( 31 ), no Anexo 8. Porém, esta foi 

digitada incorretamente por ele, utilizando a letra grega maiúscula ao invés da 

minúscula, que poderia levar a uma interpretação errada durante a dedução. Assim, a 

seguinte fórmula deve ser modificada: 

Ψ1
′(𝛼) = 2 ∙ 𝜏12

∞ ∙ 𝑒−2∙|𝛼| → ψ1
′ (𝛼) = 2 ∙ 𝜏12

∞ ∙ 𝑒−2∙|𝛼| ( 64 ) 

Neste mesmo Anexo foram deduzidas as fórmulas da eqs.( 32 ) a ( 35 ) com certo 

trabalho algébrico. Por exemplo, foi necessário utilizar funções como o delta de 

Kronecker, inúmeras transformações de funções hiperbólicas em exponenciais (e 

vice-versa), abertura em dois casos (quando da existência de funções com módulos), 

operações com somatórios (abertura de somatórios, mudanças de variáveis, mudança 

de intervalos e outras propriedades) e outras manipulações algébricas. 

Já a eq.( 36 ) foi mostrada numericamente (além de encontrar que as fórmulas são 

equivalentes, após certas simplificações): fez-se tanto a subtração entre a fórmula 

deduzida e a proposta por Radi (almejando resultado nulo) e a divisão entre ambas as 

fórmulas (almejando resultado unitário). 

Como visto no Anexo 9, tanto para valores positivos quanto para valores negativos 

de 𝛼, a subtração das fórmulas resultou zero no intervalo procurado (para valores de 

𝛼 até ±2𝜋), considerando valores de 𝑚 arbitrados (Figura 39).  
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Figura 39 – Gráfico da subtração entre a fórmula deduzida e a da eq.( 36 ) em função de 𝜶 > 𝟎, 

com 𝒎 = 𝟏𝟕 

Do mesmo modo, o gráfico da Figura 40 demonstra que a razão entre as fórmulas é 

igual a 1, provando que ambas são equivalentes. 

 

Figura 40 – Gráfico da razão entre a fórmula deduzida e a da eq.( 36 ) em função de 𝜶 > 𝟎, com 

𝒎 = 𝟏𝟕 

Já as fórmulas das eqs.( 37 ), ( 38 ) e ( 39 ) puderam ser deduzidas literalmente no 

Anexo 10, utilizando várias manipulações algébricas já citadas. Cabe ressaltar que há 

um erro de digitação na eq.( 38 ): a ausência do sinal de negativo entre 𝐵 e (𝜎22
∞ −

𝜎11
∞) leva a entender erroneamente que se trata de uma multiplicação (em que 

normalmente o sinal é omitido). Assim, é necessário mudar a seguinte fórmula: 

Φ1
∗(𝛼) = 2𝐾𝑒−|𝛼| sinh 𝛼 + 𝐵(𝜎22

∞ − 𝜎11
∞)𝑒−2|𝛼|𝑠𝑖𝑔𝑛 𝛼 → 

→ Φ1
∗(𝛼) = 2𝐾𝑒−|𝛼| sinh 𝛼 + 𝐵 − (𝜎22

∞ − 𝜎11
∞)𝑒−2|𝛼|𝑠𝑖𝑔𝑛 𝛼  

( 65 ) 
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Com relação à dedução das fórmulas das eqs.( 40 ) a ( 44 ), no Anexo 11, notou-se 

que ora Radi (2011) considera o módulo dentro da somatória, ora fora, através do uso 

da função 𝑠𝑖𝑔𝑛(𝛼), evitando, assim, uma inconsistência entre as fórmulas. Porém, a 

dedução das duas primeiras fórmulas não pôde ser terminada neste Trabalho de 

Conclusão de Curso. Para a dedução das seguintes e para a determinação das 

constantes desconhecidas (próximo tópico), foi considerado que estas fórmulas 

estavam corretas. É importante ressaltar que as outras três fórmulas deste anexo 

puderam ser facilmente deduzidas (ou ter suas equivalências demonstradas) e é 

interessante, para trabalhos futuros, que se terminem as deduções faltantes. 

4.1.11 Determinação das constantes desconhecidas 

Em sequência às deduções, as constantes podem ser determinadas utilizando certas 

fórmulas aplicadas às condições de contorno: basicamente nos bordos dos furos 

(𝛼 = 𝛼1 e 𝛼 = 𝛼2). Deste modo, vários sistemas lineares foram obtidos para 

determinar os valores de 𝐴1, 𝐵1, 𝐶1 e 𝐵 (Anexo 12); 𝑎1 e 𝑐1 (Anexo 12); 𝐴𝑛, 𝐵𝑛, 𝐶𝑛 e 

𝐷𝑛 (Anexo 13), 𝑎, 𝑏𝑛, 𝑐𝑛 e 𝑑𝑛 (Anexo 13). 

As fórmulas base para os sistemas lineares – eqs.( 45 ), ( 48 ), ( 50 ) e ( 53 ) – 

puderam ser obtidas facilmente (apresentadas nos respectivos Anexos) e não 

apresentaram erros, com exceção da segunda fórmula da eq.( 53 ), em que Radi 

(2011), após derivar os senos e cossenos hiperbólicos, pela regra da cadeia, errou ao 

digitar o resultado: no lugar de sinh (𝑥) deveria constar cosh (𝑥) e vice-versa. Assim, 

a seguinte fórmula deve ser corrigida: 

 

( 66 ) 

Através da dedução dos coeficientes da eq.( 49 ) no Anexo 12, observou-se a falta de 

um sinal de negativo no valor do coeficiente 𝑐1. 

A conferência dos coeficientes encontrados foi feita com o seguinte procedimento: 

 Aplicação das condições de contorno nas fórmulas base 

 Obtenção do sistema linear 
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 Solução do sistema linear pelo método de Cramer 

 Subtração entre o coeficiente obtido e o proposto por Radi (2011) 

 Plotagem com parametrização de todos os fatores inclusos na fórmula 

Deste modo, foi possível comparar as fórmulas para situações totalmente genéricas e 

mostrou-se que elas são consistentes, já que nos intervalos de 𝛼1, 𝛼2 ∈ [−2𝜋 … 2𝜋] a 

subtração manteve-se resultando zero, como pode ser visto no exemplo do 

coeficiente 𝐴1 nas Figuras 41 e 42. 

 

Figura 41 – Gráfico interativo da subtração entre o coeficiente 𝑨𝟏 deduzido e o proposto por 

Radi (2011), com variação manual dos parâmetros 𝒈𝟐, 𝒇𝟏 e 𝒇𝟐 

 

Figura 42 – Gráficos da subtração entre o coeficiente 𝑨𝟏 deduzido e o proposto por Radi (2011), 

com variação do parâmetro 𝒈𝟏 
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4.2 Método numérico 

Como dito anteriormente, o método dos Elementos Finitos foi confrontado com os 

resultados analíticos para o caso de um furo em chapa infinita no caso básico de 

Kirsch, em que há uma solução analítica. 

Já para o contexto deste trabalho, em uma primeira abordagem, foram feitas as 

simulações referentes às Figuras 8 e 9 de Radi (2011), totalizando 11 configurações 

diferentes, em que se variavam: 

 Localização da pressão interna (referente às Figuras 8a e 8b) 

 Posição relativa horizontal entre os furos (referente à Figura 9a) 

 Tamanho relativo entre os furos (referente à Figura 9b) 

Os resultados serão comparados aos resultados analíticos de Radi (2011), a seguir. 

Em seguida, será feita uma análise variando-se a posição relativa vertical entre os 

furos. 

4.2.1 Verificação do método (problema de Kirsch) 

A solução analítica sem tensão no infinito (somente pressão interna) leva a uma 

distribuição uniforme da tensão circunferencial (constante e igual à pressão interna 

considerada – neste caso 1 MPa), como pode ser visto no gráfico da Figura 43, à 

esquerda, proveniente da programação do Anexo 14. 

Já a solução com carregamentos uniaxial e pressão interna no furo, há a superposição 

de ambos os efeitos. Isto é, a tensão constante unitária é somada à tensão concentrada 

por causa da presença do furo (de valor 3 MPa) nos bordos transversais ao 

carregamento (resultando em 4 MPa). Já nos bordos longitudinais, a tensão de tração 

ocasionada pela pressão interna é cancelada com a tensão de compressão proveniente 

do carregamento uniaxial, conforme pode ser visto na Figura 44, à esquerda.  
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Figura 43 – Tensão circunferencial nos bordos de um furo submetido a pressão interna, 

exclusivamente, em função de θ: resultados analítico (à esquerda) e numérico (à direita) 

  

Figura 44 – Tensão circunferencial nos bordos de um furo submetido a pressão interna e 

carregamento uniaxial, em função de θ: resultados analítico (à esquerda) e numérico (à direita) 

Comparando com o resultado das simulações numéricas por elementos finitos 

(gráficos à direita nas Figuras 43 e 44), nota-se que os resultados são coerentes e, 

deste modo, o modelo é verificado. 

4.2.2 Variação da localização da pressão interna 

No primeiro caso (8a), simularam-se dois furos alinhados, sendo apenas o da direita 

com pressão interna (o de índice 1, com raio menor). Pode-se notar na Figura 45, no 

gráfico da direita, que os resultados obtidos pelo método dos elementos finitos são 

compatíveis com o esperado, ao se comparar com a resposta analítica de Radi (2011) 

– gráfico da esquerda. 
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Figura 45 – Tensão circunferencial nos bordos dos furos no caso de pressão interna no furo 1, 

exclusivamente: à esquerda, resultados analíticos de Radi (2011) – Fig. 8.a adaptada; à direita, 

resultado obtido numericamente por elementos finitos 

No segundo caso (8b), a simulação é similar: dois furos alinhados, mas com pressão 

interna no furo de índice 2. Nota-se na Figura 46, que os resultados (numéricos e 

analíticos) são equivalentes. 

 

Figura 46 – Tensão circunferencial nos bordos dos furos no caso de pressão interna no furo 2, 

exclusivamente: à esquerda, resultados analíticos de Radi (2011) – Fig. 8.b adaptada; à direita, 

resultado obtido numericamente por elementos finitos 
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4.2.3 Variação da posição relativa horizontal entre os furos 

Como feito por Radi (2011), variou-se a posição relativa entre os furos. Inicialmente, 

apenas na coordenada 𝑥1 (horizontalmente), para o caso de apenas um furo 

pressurizado. 

Os resultados obtidos foram confrontados com os analíticos de Radi (2011) e podem 

ser vistos na Figura 47. Vê-se que os resultados são compatíveis com o esperado. 

 

Figura 47 – Tensão circunferencial nos bordos dos furos no caso de pressão interna no furo 1, 

exclusivamente, em função da distância horizontal relativa entre os furos: à esquerda, 

resultados analíticos de Radi (2011) – Fig. 9.a adaptada; à direita, resultado obtido 

numericamente por elementos finitos 

4.2.4 Variação do tamanho relativo entre os furos 

Para a variação do tamanho dos furos, mantendo-se uma distância constante entre os 

furos, os resultados também foram consistentes com os obtidos analiticamente, como 

pode ser visto na Figura 48. 

É interessante notar que há uma diferença pequena entre os resultados da tensão 

circunferencial da bibliografia e os encontrados por elementos finitos na linha 

tracejada vermelha da Figura 48. Essa diferença pode ter sido causada por imprecisão 

da malha utilizada e, por isso, seria interessante repetir a simulação mantendo as 

proporções entre os raios dos furos e outras geometrias. 
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Figura 48 – Tensão circunferencial nos bordos dos furos no caso de pressão interna no furo 1, 

exclusivamente, em função do tamanho relativo entre os furos: à esquerda, resultados analíticos 

de Radi (2011) – Fig. 9.b adaptada; à direita, resultado obtido numericamente por elementos 

finitos 

4.2.5 Variação da posição relativa vertical entre os furos 

Foram testadas algumas configurações de furos deslocados (com ângulo entre seus 

centros), conforme a Figura 49. 

 

Figura 49 – Chapa infinita com dois furos circulares diferentes sob carregamento biaxial. O 

ângulo 𝜻 define a orientação relativa das direções principais do campo de tensões remotas com 

respeito à coordenada 𝒙𝟏 (Radi E. , 2011) 
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Os três casos estudados – que se referem às Figuras 11, 12 e 13 de Radi (2011) – são 

apresentados na Tabela 3 a seguir (onde as distâncias estão em mm, e as tensões em 

MPa). Em todos os casos foi mantido o tamanho e localização do furo de índice 1 e 

variados os parâmetros do segundo furo. Os carregamentos foram calculados com 

base na eq.( 56 ). Assim: 

 𝑟1 = 20 𝑚𝑚 

 𝑥𝑐1 = 1020 𝑚𝑚 

 𝑦𝑐1 = 𝑦𝑐2 = 1000 𝑚𝑚 

Tabela 3 – Segundo grupo de simulações, relativo às Figuras 11,12 e 13 de Radi (2011) 

Figura 𝒓𝟐 𝒙𝒄𝟐 𝜻 𝝈𝑰
∞

 𝝀 𝝈𝟐𝟐
∞  𝝈𝟏𝟏

∞  𝝉𝟏𝟐
∞  

11c 4 976 30o 1 0 0,75 0,25 0,433 
12b 10 986 30o 1 0 0,75 0,25 0,433 
13c 10 980 60o 1 -1 -0,50 0,25 0,866 

Os resultados obtidos pela análise numérica, por elementos finitos, estão ilustrados 

na Figura 50 a seguir, para estas configurações. 

  

 
Figura 50 – Tensão circunferencial para as configurações 11c (acima à esquerda), 12b (acima à 

direita) e 13c (abaixo) 
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A comparação dos resultados da simulação por elementos finitos com os obtidos 

analiticamente por Radi (2011) – em suas Figuras 11, 12 e 13 – pode ser vista na 

Tabela 4 a seguir. Esta tabela mostra a tensão máxima de cada caso (como já visto na 

Figura 50), em MPa, para os furos 1 e 2 e a posição onde ela ocorre, em graus. Radi 

(2011) indica diretamente o fator de concentração de tensão (Stress Concentration 

Factor – SCF) e a posição onde este ocorre. Neste caso, ambas as grandezas são 

equivalentes, devido à magnitude unitária dos carregamentos nos bordos das chapas, 

e sua razão pode ser calculada para comparação. 

Tabela 4 – Comparação dos resultados numéricos por elementos finitos com os analíticos de 

Radi (2011) para localização e magnitude da maior tensão ocorrida em cada caso 

Figura 𝝈𝜽 𝒏𝒖𝒎 𝜽𝒏𝒖𝒎 𝑺𝑪𝑭𝑹𝒂𝒅𝒊 𝜽𝑹𝒂𝒅𝒊 𝝈𝜽 𝒏𝒖𝒎 𝑺𝑪𝑭𝑹𝒂𝒅𝒊⁄  𝜽𝒏𝒖𝒎 𝜽𝑹𝒂𝒅𝒊⁄  

11c_1 3,1 151 3,1 156 100% 97% 
11c_2 3,8 -151 3,9 -168 96% 90% 
12b_1 5,2 169 5,5 168 94% 100% 
12b_2 5,9 -166 5,9 -172 100% 96% 
13c_1 4,2 -63 4,2 -60 101% 105% 
13c_2 4,9 63 4,9 90 99% 70% 

Como observado na Tabela 4, os resultados são compatíveis, já que os erros ficam, 

na maioria dos casos, em torno de 5%. A maior discrepância encontrada foi para o 

caso referente à Figura 13 de Radi (2011) para o segundo furo: 30%. 
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Cabe ressaltar que os dados analíticos foram retirados de Radi (2011), conforme a 

Figura 51. 

 

 

 

Figura 51 – Variação dos Fatores de Concentração de Tensão (SCF) e a correspondente posição 

angular onde ocorre a tensão circunferencial máxima, com relação ao ângulo 𝜻 para as 

condições de: 11c (gráficos superiores), 12b (gráficos ao meio) e 13c (gráficos inferiores). 

Adaptado de (Radi E. , 2011) 
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5 CONCLUSÃO 

Após a conclusão deste trabalho, notou-se que ainda é necessária conferência mais 

aprofundada nas fórmulas de Radi (2011) de modo a encontrar outros possíveis erros 

de digitação, pois, mesmo após modificar várias de suas fórmulas, continuou-se a 

encontrar resultados incompatíveis com a realidade: foram encontradas tensões 

radiais nos bordos dos furos, mesmo na ausência de pressão interna. 

Por outro lado, considerando os resultados analíticos retirados de Radi (2011), 

concluiu-se que estes são condizentes com os encontrados por elementos finitos, que 

se mostrou bem robusto e com resultados confiáveis para a configuração de chapa 

com orifícios circulares. Deste modo, entende-se que tanto o método analítico com o 

uso de coordenadas bipolares quanto o método numérico podem ser aplicados de 

maneira equivalente. 

Apesar de o método analítico aparentar ser mais rápido e direto, por se tratar de uma 

fórmula para configurações genéricas, teve-se grande dificuldade em sua 

implementação (devido aos erros encontrados) e considerou-se que o método 

numérico para estas configurações simples pode ser mais indicado pela rapidez de 

resultados e facilidade de modelagem. 

Para trabalhos futuros, além de uma nova conferência das fórmulas de Radi (2011), 

na parte analítica, é interessante verificar a seção com variação da posição vertical 

entre os furos. E na parte numérica, podem-se fazer estudos de malha e utilização do 

elemento de estado plano de tensão, substituindo o de membrana aqui utilizado 

(devido à maior facilidade de extração de dados). 
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7 ANEXOS 

 

7.1 Anexo 1 – Programação para a determinação de 𝑲 

[ numeração de fórmulas conforme Radi (2011) ] 

(K é incógnita ainda) 

Usando as funções 

(61) ok  

 

 

 

 

 

(52) ok 

 

(30) (ok) 

 

 (48) ok 

 

Podemos calcular a 

(60) ok 

 

 

 

 

E, com o auxílio das funções de 

(56) ok 
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Calculamos 

(55) ok 

 

 

 

 

Que, na condição de (35), obteremos K: 

 

 

 
 

Para outra configuração, fez-se o seguinte teste, variando o limite superior do 

somatório: 

 

 

 

 

 

Ou seja, não precisa calcular até o infinito. O valor de K se estabilizou com limite 

superior de 100.  
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7.2 Anexo 2 – Programação para o cálculo de 𝜷(𝜽) para o furo 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

O mesmo, mas em graus: 
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Comparando com a dedução geométrica de arco capaz: 
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Máxima diferença: theta=142º ~4,55º de erro. 
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7.3 Anexo 3 – Programação para o cálculo das tensões 

[ numeração de fórmulas conforme Radi (2011) ] 

Parâmetros dados 
 

 

 

 

 

 

 

 

 

Parâmetros calculados: 

(5) 

 

 

 

 

Determinação de phi_n e suas derivadas: 

Como todos os parâmetros já foram calculados anteriormente (na determinação de 

K), temos diretamente que: 

(17) (ok) 
 

 

 

(18) (ok) 
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Assim, temos o phi, sua primeira derivada e sua segunda derivada: 

 

 

 

 

Determinação de psi_n e suas derivadas: 

Com o auxílio de 

(58) corrigida 

 

 

Usando 

(53) (ok) 

 

(50) (ok?) 

 

Podemos calcular os parâmetros da 

(63) ok 

 

 

 

 

Assim, temos: 

(17) (ok) 
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(19) (ok)  
 

 

 

Assim, temos o psi, sua primeira derivada e sua segunda derivada:  

 

 

 

 

Sigma_alpha 

A tensão é calculada a partira das tensões fundamental e auxiliar. 

Tensão fundamental: 

(15) 

 

Tensão auxiliar: 

(20) corrigida 2x? 
 

  



 

88 

 

Portanto: 

 

Furo 1: 

 

 

 
Furo 2: 

 

 

 
 

Tau_beta.alpha 

A tensão é calculada a partira das tensões fundamental e auxiliar. 

Tensão fundamental: 

(15) 

Tensão auxiliar: 

(20)  
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Portanto:  

 

Furo 1: 

 

 

 
Furo 2: 

 

 

 
 

sigma_beta 

A tensão é calculada a partira das tensões fundamental e auxiliar. 

Tensão fundamental: 

(15) 
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Tensão auxiliar: 

(20) 
 

Portanto:  

 

Furo 1: 

 

 

 
Furo 2: 
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7.4 Anexo 4 – Programação para a dedução das tensões a partir de 𝒉𝝌 
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E, considerando: 
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Obtemos, explicitamente:  
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7.5 Anexo 5 – Programação da comparação das tensões radiais 

deduzidas com as propostas por Radi (2011) 

Neste teste, serão consideradas as tensões como a soma das tensões fundamental e 

auxiliar. 

Primeiramente, considerando as fórmulas deduzidas por Radi. 

Em seguida, comparando com as rededuzidas por meio da fórmula de Jeffery. 

[ numeração de fórmulas conforme Radi (2011) ] 

Tensão fundamental (Radi): 

(15) 

 

 

 

As componentes de tensão derivadas da função de tensão auxiliar são (Radi): 

(20) 
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Condições do teste: 
 

 

 

 

 

 

 

 

 

 

 

Teste de rededução (apenas para alpha): 
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: 

 

Radi:  

 

 

Jeferry novo  

 

 

Comparação entre eles: 
 

 

Tensão fundamental e auxiliar: 

Para o furo 1: 

 

 

 

Ou seja, a tensão fundamental sigma_alpha_(0) está correta (a direção da tensão 

radial varia com theta). 

Mas, em contrapartida, a auxiliar: 
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Não zera a fundamental (como deveria ser) 

TESTE, com o expandido do Jeffery:  
 

 

 

 

 
 

É praticamente igual à outra. 
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OU, se subtrair o deduzido de Radi... 

 
 

 

 
Ou seja, a fórmula encontrada por Radi é equivalente à rededuzida em Jeffery. O que 

pode estar errado são os parâmetros que nela são inseridos (por ex, A_n, etc). Ou 

seja, é necessário conferir a aplicação das condições de contorno. 
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7.6 Anexo 6 – Programação para a verificação das tensões radiais 

deduzidas através da expansão em séries de Fourier 

[ numeração de fórmulas conforme Radi (2011) ] 

(27) 

 

(28)  

 

(29) 

 

(27)  

 

(28) 

 

(29) 

 

(30) 

 

Tensão fundamental da eq (15) de Radi (já conferida) 

 

 

 

 

Tensão fundamental aberta em séries de Fourier da eq (26) de Radi (a conferir): 
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Diferença: 

 

 

Diferença Fourier:  

Para o furo 1: 

 

 

 

Teste Fourier: 
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Comparação: 

 

 

 

Ou seja, por experimentação, ambas as fórmulas são idênticas. 
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7.7 Anexo 7 – Programação para a conferência da eq.( 27 ) 

[ numeração de fórmulas conforme Radi (2011) ] 

(20) tensão auxiliar corrigida (termo de B*sinh(alpha) que faltava parêntesis) 

 

(26) tensão fundamental: 

 

Daí: 

 

(I) 

 

Queremos mostrar que a (31) é equivalente à (20): 

(31) 
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Que equivale a: 

 

Usando: 

(33) 

 

 

 

 

(34) 

 

 

 

 

Aplicados em: 
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Resulta: 

 

Observando o segundo somatório de n=1...infinito 

 

Pode-se deduzir (ao final deste Anexo) que ele é equivalente a: 

 

O que leva ao cancelamento de phi_1: 

(II) 
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Deste modo, podemos comparar as equações (I) e (II) termo a termo: 

(I) 

 

(II) 

 

Nota-se que ambas são fórmulas com o formato: 

 

Assim: 

(i) termos fora dos somatórios 
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Mas como 

 

 

 

 

Temos que o valor obtido por termo_I - termo_II é igual a zero. 

 

(ii) termo somatório n=1...infinito 

 

 

São iguais.  

 

(iii) termos somatório n=2...infinito 
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Ou seja, a equação (31) difere da equação (20) por este fator "ERRO" acima, em (iii). 

Acredita-se que o erro esteja na equação (20), em que um fator 1/2 foi escrito a mais. 

Suspeita-se pela falta de paralelismo com a função de sigma_beta. Além disso, as 

deduções das fórmulas seguintes foram baseadas na equação (31) que, tomada como 

correta, foi aplicada na equação (35) levando a toda a dedução para as condições de 

contorno. Ou seja, caso faltasse ser multiplicado o fator 1/2 na equação (31), este 

teria sido notado nas fórmulas conseguintes, o que não foi o caso. 

 

OBS: Dedução para o segundo somatório: 

Seu termo interno é: 
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Termos relacionado a phi_n (n, n-1, n+1): 

 

 

 

Que é: 

 

Que pode ser aberto em três somatórios 

 

 

 

Analogamente: 



 

112 

 

 

 

Portanto, juntando as três somatórias... 

 

Obs: 

 

 

 

 

 

...obtemos: 

 

Analogamente: 

Termos relacionados a psi_n (n, n-1, n+1): 
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Que é 

 

Que pode ser aberto em três somatórios 

 

 

 

 

 

Analogamente: 

 

 

Portanto, juntando as três somatórias... 
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Obs: 

 

 

 

 

 

 

...obtemos: 

 

Assim, teremos que: 
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7.8 Anexo 8 – Dedução das fórmulas das eqs.( 31 ) a ( 35 ) 

[ numeração de fórmulas conforme Radi (2011) ] 

(37) e (38)---------- 

(31) 
 

(32) (corrigida tirando o n que multiplicava o T_n): 

(36) 

para alpha=alpha_1 e alpha=alpha_2: 
 

 

Com 

(27) 

 

 

 

 

Os termos com cos e sin n*beta devem desaparecer. Assim, pegando apenas os 

termos constantes, para n=0: 

de (31): 

 

 

Que é a equação (37) 

E, de (32): 

 

Nota-se que foi escrito Psi e não psi no paper. Erro de digitação. 
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(39)---------- 

 

Requere "sumir" com os termos que contenham sin e cos n*beta: 

de (31): 

Cancelando os termos multiplicativos de cos n*beta: 

 

Obs:  

 

Mas como o delta_n1 só existirá em n=1, e delta_n2 só em n=2, podemos observar o 

interior do somatório:  

 

Que é a equação (39). 
 

(40)---------- 

 

Analogamente, de (31), sumir com sin n*beta: 
 

Que é a (40). 
 

(41)----------  
 

Analogamente, de (32), sumir com sin n*beta: 

 

 

Podemos observar o interior do somatório:  

 

Que é a fórmula (41) 
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(42)---------- 

 

Analogamente, de (32), sumir com cos n*beta: 
 

Que é a (42).  

 

 

(43)---------- 

 

Fazendo a seguinte operação com a equação (41): 

 

Retirando os termos de n=1 e n=2 (com os deltas): 

 

Utilizando a equação (28): 

(28) 

 

 

 

 

 

Obs: 
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Então: 

 

 

E, olhando apenas para o primeiro somatório: 

 

Pode ser aberto em outras somatórias: 

 

 

 

 

 

 

Assim, somando todas os somatórios: 

 

 

Portanto,  

 

Que é a (43). 
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(44)---------- 
 

Para m>=2, fazendo: 

  

Temos: 
 

 

 

Analisando por partes o somatório: 

(a) 

 

(28) Utilizando: 

 

Obtemos: 

 

Assim: 

(a)  

(b) 

 

Só haverá valores para n=1 e n=2. Assim: 
 

 

 

 

 

 

Mas 
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Fazendo: 

 

 

 

Temos: 

(b)  

 

(c) 

 

 

Que deve ser aberto em três somatórios: 

(i) 

 

 

 

e 
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Temos que, reescrevendo com "n": 

 

Assim: 

(i)  

 
 

(ii) 

 

 

 

(iii) 

 

 

 

e 
 

Temos que, reescrevendo com "n": 

 

Assim: 

(iii)  

E, portanto, como (c)=(i)+(ii)+(iii), temos: 

 

 

Mas como: 
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Temos que 

(c)  

 

Portanto, somando as três parcelas (a)+(b)+(c), temos: 

 

E, 

como 

(43)  

 

Temos, finalmente: 
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Após manipulação algébrica dos termos multiplicativos de K (na Obs. em breve), 

temos: 

 

 

 

Que é a fórmula (44). 

 

Obs.: Dedução do termo multiplicativo de K 

 

Olhando apenas os termos multiplicativos de K:  

 

Mas como: 
 

 

 

 

E, abrindo o cosh^2(alpha): 

 

 

 
 

Temos que o termo com K fica: 

 

 

 

Fazendo 
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Aplicado em: 

 

 

Que, para alpha>0 

 

 

 

 

Que equivale a: 

 

E, para alpha<0: 

 

 

 

 

Que equivale a: 

 

Ou seja, temos: 

 

Que é o mesmo que: 
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7.9 Anexo 9 – Programação para a eq.( 36 ) 

1. Considerando α>0 
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---------Ou seja, ambas as fórmulas são equivalentes! 
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2. Considerando α<0 
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----Ou seja, ambas as fórmulas são equivalentes!! 
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7.10 Anexo 10 – Dedução das eqs.( 37 ), ( 38 ) e ( 39 ) 

[ numeração de fórmulas conforme Radi (2011) ] 

(46)--------------- 

Usando: 

(31) 

 
Temos: 

 

   e      

 

 1. Para alpha>=0 

 

 

 

 

  
 

2. Para alpha<0 
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Assim: 

 

Portanto: 

 

Que é a fórmula (46). 

 

(47)-------- 

De (43): 

 
Com o uso de (46): 

 

 

 
Mas como 

 
Temos: 

 

Nota-se que ele esqueceu do sinal de negativo após o B! 

(48)-------- 

A fórmula (48) é obtida aplicando as fórmulas (45) e (46) em (44): 

 

 

(44): 
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Comparando com a Equação proposta por Radi, tem-se que o fator que diferencia 

ambas as fórmulas é: 

 

Ou seja, o seguinte fator deve ser nulo: 

 

 

 

 

Isto é, deve ser nulo: 

 

 

Abrindo os senos/cossenos hiperbólicos:  

 

 

Considerando Alpha positivo: 

 

 

 

 
 

Considerando Alpha negativo: 

 

 

 
 

Conclui-se que ambas as fórmulas são equivalentes.  
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7.11 Anexo 11 – Dedução das eqs.( 40 ) a ( 44 ) 

[ numeração de fórmulas conforme Radi (2011) ] 

(49) ----------- (dedução parcial) 

A partir de: 

(39) 
 

m>=2... 

 

 

Pode ser quebrado em três somatórios: 

 

(i) 

 

Que pode ser aberta em quatro somatórios: 

(a) 

 

(b) 

 

 

(c) 

 

 

(d) 
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Portanto, somando-se os quatro termos: 

 

 

 

 

Mas como (a) + parte_(b) + (c) = 
 

 

 
 

Temos que (a)+(b)+(c)+(d) = 

 

 

(ii) 

 

 

(iii) 
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Fazendo (i)+(ii)+(iii): 

 

 

É possível colocar o sign(alpha) dentro do somatório colocando o módulo em alpha 

 

(...) Dedução a ser continuada. 

 

(50) ------------------- (dedução parcial) 

A partir de: 

(42) 
 

 

 

Pode ser aberto em quatro somatórios: 

(i) 
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(ii) 

 

(iii) 

 

 

(iv) 

 

 

 

 

Mas como (i) + (ii) + parte_(iii) =  

 

 

 
 

Temos que a soma é: 
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(...) Dedução a ser continuada. 

 

(51) ------------------- 

1) Considerando α>0 
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Ou seja, ambas as fórmulas são equivalentes. 
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2) Considerando α<0 
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Ou seja, ambas as fórmulas são equivalentes! 
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(52) ------------------- 

Substituindo a equação (51) na (49): 

 

 

 

Que é equivalente ao deduzido por Radi. 

 

(53) ------------------- 

Multiplicando a Eq. (40) por sinh(m-n)alpha e somando de n=1 até m-1 

(40) 

 

Podemos dividir em 5 somatórios: 

(i) 

 

 

(ii) 
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(iii) 

 

 

(iv) 

  

 

(v) 

 

 

Assim, somando (i)+(ii)+(iii)+(iv)+(v): 

 

 

 

 

 

Mas como (i) + (ii) + parte_(iii) = 
 

 

 
 

E como (iv) e (v) podem ser somados diretamente, temos que a soma total resulta: 

 

 

Que é a primeira fórmula de (53). 
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E, portanto, temos que, usando a fórmula (51): 

(51) 

 

Temos 

 

 

Que é a segunda fórmula de (53) 
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7.12 Anexo 12 – Dedução das eqs.( 45 ), ( 48 ) e ( 49 ) e programação para 

as eqs.( 46 )( 47 ) 

[ numeração de fórmulas conforme Radi (2011) ] 

(54)-------- 

Igualando a equação 

(37) 

 
À equação 

(17) 

 
Temos:  

 

 

 
Que é a primeira equação da (54). 

Também: 

(33)  

 
E, como a derivada de phi_1 (17) é: 

 

 

 

 
Temos que: 

 
Ou seja, 

 

 
Que, por outro lado, é igual a: 

(47) (fórmula já corrigida) 

 
Portanto: 
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Que é a segunda fórmula da (54). 

(57)-------- 

Fazendo a derivada de: 

(17) 

 

 
Utilizando esta derivada na fórmula: 

(38) (já corrigida) 

 
 

 
Que é a fórmula (57). 

(58)--------- 

É necessário resolver o sistema linear formado pelas equações provenientes da 

equação (57) aplicada nas condições de contorno:  

(57) 

 

Em alpha=alpha_1 e alpha=alpha_2: 

 

x=a_1    y=c_1 
 

 

 

 

 

Isto é, está faltando um sinal negativo na segunda fórmula da eq (58) de Radi!  
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Programação para (55) e (56): 

Aplicando alpha=alpha_1 e alpha=alpha_2 em (54), obtemos um sistema linear. Para 

mostrar a (55) utiliza-se a (56). 

Estratégia: comparação da subtração do valor de Radi (2011) com o obtido, 

transformando tudo em parâmetros. 

Equivalência entre D (ou D_0) e o Determinante do sistema linear (Regra de Cramer) 

 

 

 
 

 
 

Determinante da Matriz: 

 
D (ou "D Zero") 

 
 

 
 

Ou seja, são equivalentes até alpha = -2*pi 
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Regra de Cramer para encontrar x (ou A1): 

 

 

 
Tratei g_1, g_2, f_1, f_2 como parâmetros. Mesmo variando bastante, o patamar 

entre -2*pi e 2*pi se manteve inalterado. 

Regra de Cramer para encontrar y (ou B1):  
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Regra de Cramer para encontrar z (ou C1): 
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7.13 Anexo 13 – Dedução das eqs.( 50 ) e ( 53 ) e programação para as 

eqs.( 51 ), ( 52 ) e ( 54 ) 

[ numeração de fórmulas conforme Radi (2011) ] 

(59)----- 

 
(60) e (61)------- 

Feita por estratégia semelhante à das equações (55) e (56). “n” é tido como 

parâmetro (que foi variado, assim como os outros parâmetros). As equações de (61) 

são utilizadas na (60), então ambas serão juntamente analisadas. 

Usando as equações de (59), avaliando em alpha=alpha_1 e alpha=alpha_2:
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(62)------ 

 
 

(63)--------
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7.14 Anexo 14 – Verificação do método de elementos finitos: 

programação para o problema de Kirsch 
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8 APÊNDICES 

 

8.1 Apêndice 1 – Rotação do tensor das tensões 

 

Matriz de transformação (rotação em z): 

 

 

 

 

 
 

Tensor das tensões: 

 

Em coordenadas polares: 

 

 

Daí: 
 

 

 

 

 

 

 


